Browsed by
Tag: SENS Research Foundation

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on June 7th, 2019. In this article, Mr. Hill discusses how he feels great about being over 40 years old, instead of the depressing feeling that many tend to have on their birthdays, because he is very aware of how close medical science is to curing age-related diseases. He goes on in discuss, in his opinion, two of the most promising research methods being sought by various companies to defeat age-related diseases.

~ Bobby Ridge, Assistant Editor, July 7, 2019


Not so long ago, it was my 44th birthday, and I’ve finally decided to write something that I’ve been reflecting on for a while. To some people, a birthday is a cause for celebration; for others, it is viewed as a bad thing.

Yes, if you take the negative view, you could see it as simply a reminder of being another year older and another year closer to the grave. However, this is not how I see it; in fact, I think quite the opposite. I see it as another year closer to our goal: the defeat of age-related diseases due to the progress of rejuvenation biotechnology that offers longer and healthier lives.

From my point of view, viewing birthdays, or, indeed, the passing of time, as a positive or negative thing is largely a question of knowledge and understanding of the aging research field, which ties in with what I want to address today.

Knowledge is power

During my work as a journalist, people often ask me how things are progressing in the field. This is, of course, a perfectly reasonable and understandable question to ask. While I am always more than happy to talk about the field and answer this question, I also urge people to delve deeper into the field so that they can learn and evaluate for themselves rather than simply taking my word for it.

Our website, including the Rejuvenation Roadmap, is a good resource to start learning and to hear the latest news, as are places such as FightAging and the SENS Research Foundation website. Conferences such as Ending Age-Related Diseases and Undoing Aging are also valuable places to learn more about what is happening in the field.

Sometimes, I encounter people outside, but also fairly frequently within, the community who can be somewhat pessimistic about the field and its progress. It is perfectly natural to be cautious about the unknown, but there comes a point at which caution becomes unwarranted pessimism. The “Science Will Not Defeat Aging in My Lifetime, so Why Bother?” argument is a classic example of this, and much of this is caused by a lack of knowledge and understanding of the field.

The Latin phrase scientia potentia est, meaning “knowledge is power”, is particularly apt here. Knowledge and understanding allow us to better evaluate a situation or a proposal and reach a conclusion. It is hard to reach an accurate conclusion about anything without all the facts in place, yet I often see people doing it. Of course, there are always people who will not put in the time and effort required to learn about a topic properly, so they make predictions without all the facts, but there really isn’t much we can do about these people.

However, as advocates and supporters, we can do our best to learn about such things ourselves, and this will also come in useful when speaking to others about the field, as there is nothing like having a good understanding of the topic to help you convey it to others. That does not mean you need to become a biologist and understand things to such deep levels but even a solid understanding of the basics can be a huge help when it comes to engaging with others on the subject and also for understanding where we are currently progress wise.

Future-positive

This relates to a second question people often tend to ask me, which is if I think that they or we have a chance of living long enough to see these technologies arrive.

Obviously, no one can predict the future, so this question, by its very nature, is a tricky one to answer. I generally avoid being too specific on the timeframe in which we will reach the goal of longer lives through science, but I am optimistic that people in my age group, even perhaps older, have a reasonable chance of making the cut.

The reason that I am generally optimistic about the future is mostly that, as a journalist who speaks to hundreds of researchers, each focused on a part of the puzzle, I get an almost unique picture of the field. I can see the broader landscape and how and where things in the field or related fields connect or may connect in the future. A breakthrough in a related medical field may not have immediately apparent utility in aging research at first glance, but a deeper look could reveal hidden potential.

This fairly unique insight, combined with the knowledge that I have collected over the years working in the field, makes me fairly optimistic about the future and my place in it. As I have said a number of times in the past, the defeat of age-related diseases will not suddenly happen overnight; there is unlikely to be a single moment at which humanity goes from having no choice about aging to having control. It is far more likely that there will be steady progress, with incremental breakthroughs along the road, that will ultimately reach the goal.

Reasons to be cheerful

I would like to touch upon two of the most promising therapies that I am most interested in and believe may have a big impact in the near future (10-20 years) and that may help pave the way for major changes to how society thinks about and treats aging. Both of these therapies directly address one of the nine proposed causes of aging and thus if they work they have the potential to be transformative in healthcare. Of course, there are more therapies in development and at various stages of progress which also address the other causes of aging but these two are what I am most enthusiastic about presently. I urge you to explore the provided links to resources and learn more about each one.

Senolytics

No list of promising technologies would be complete without talking about the senescent cell-clearing drugs and therapies known as senolytics. Senescent cells are aged or damaged cells that should destroy themselves via a process known as apoptosis but, for various reasons, do not do so; instead, they hang around, sending out inflammatory signals that harm nearby healthy cells, block effective tissue repair, and contribute to numerous age-related diseases.

One proposed solution to these problem cells is to remove them by causing them to enter apoptosis, as originally intended, by using senolytic drugs and therapies. Removing these cells in mouse studies has produced some remarkable results, with mice often living healthier and longer lives as well as reversing some aspects of aging.

The race is now on to bring these drugs to people, and a number of companies are developing them right now. So far, UNITY Biotechnology has seen the most progress, and the company is already conducting human trials of its lead candidate drug (UBX0101) for the treatment of osteoarthritis. It has another candidate drug (UBX1967) closely behind; this drug is poised to enter human trials for the treatment of age-related macular degeneration, diabetic macular edema, diabetic retinopathy, and glaucoma. Based on recent comments from UNITY, we are anticipating the initial results of human trials in the next few months; hopefully, the news will be positive.

With the number of companies working on these therapies, it is fair to be optimistic about their potential to address multiple age-related diseases given that senescent cells are a proposed root cause of aging. You can also check out the Rejuvenation Roadmap to see which companies are working on senolytics and how they are progressing.

Partial cellular reprogramming

Cells can be reverted back to an earlier developmental state, known as induced pluripotency, using reprogramming factors, and this process effectively makes aged cells functionally young again in many ways. Ever since its first discovery, there has been a great deal of interest in this area of aging research.

The problem with inducing pluripotency is that the cell loses its identity and forgets what cell type it currently is, as it becomes a new kind of cell capable of being guided into changing into any other cell type, much like our cells during development. This is great for early human development, but as adults, having our cells forget what they are is bad news. Therefore, researchers have wondered if it is possible to reset a cell’s age without resetting its cell memory, and the answer appears to be yes!

Thankfully, during the reprogramming of a cell back to pluripotency, the cell’s age is one of the first things to be reset before the cell memory is wiped, and it appears possible to partially reprogram the cell so that only aging is reset. We have talked about the potential of partial cellular reprogramming and how it is similar to hitting the reset button on aging in a previous article, but, needless to say, if we can find a way to safely partially reprogram our cells, it could have a dramatic impact on how we age and may allow us to remain more youthful and healthy.

In terms of progress, partial reprogramming has already been demonstrated in mice, and now a number of groups, including Turn.Bio, the Salk Institute, Life Biosciences, Youthereum Genetics, and AgeX, are developing therapies based on partial reprogramming, which is essentially the resetting of cells’ epigenetic states (what genes are expressed) from an aged profile to a more youthful one, again directly targeting one of the proposed root causes of aging.

This approach is likely to be quite a few years away, but I think it is plausible that it could be in human trials in the next decade, and it is probably the approach that interests me the most in the field.

In closing

The truth is we cannot predict the future because it is not set in stone, so we cannot be totally certain if or when rejuvenation technologies will arrive. The best we can do is learn as much as we can about the field and try to reach a reasonable conclusion based on the situation as it is now.

The field is advancing steadily, and we should be optimistic but not complacent about progress. We should be mindful of being too negative and, equally, of being too positive without ample justification. Blind optimism is as bad as blind pessimism, and we should always strive for informed optimism.

That said, given the progress being made, I am optimistic about my chances based on the evidence to date. This is why I do not mind birthdays and why I find them positive experiences rather than negative ones. Arm yourself with knowledge, and perhaps you too will agree with me and understand why I am future positive.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity, created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

Wealth, Power, and the Prospect of Reversing Aging – Article by Arin Vahanian

Wealth, Power, and the Prospect of Reversing Aging – Article by Arin Vahanian

Arin Vahanian


I often ask myself, “Why do wealthy and/or influential people seem to support spending billions of dollars on weapons and exploring outer space, when, with their massive wealth and resources, they could help reduce human suffering and dramatically improve the quality of life for billions of people?”

And this question takes me back to a discussion I had last year with gerontologist Aubrey de Grey, during which he recounted to me a meeting he had with an ultra high-net-worth (UHNW) individual. The purpose of the meeting was to raise money for aging and life-extension research, and the UHNW individual refused to donate to SENS Research Foundation, or even to get involved, stating something to the effect of, “It won’t happen in my lifetime.”

That response perplexed me. Here we had a very successful and intelligent person, who, rather than help ensure his own children (as well as others’ children) could live a healthier and longer life, refused to do anything, for the simple reason that he did not believe we could make much progress on reversing aging in his lifetime.

While this is indeed a selfish way to look at things, it is by no means uncommon. In fact, I have been racking my brain recently, trying to figure out why the people who are best-equipped to do something about life extension and aging, do not do so (or do not do enough).

To be fair, there are a few wealthy and influential people who support research into aging and life extension, the most notable being entrepreneur Jim Mellon. However, they seem to be the exception rather than the norm.

Indeed, why do people like Jeff Bezos, Richard Branson, and Elon Musk, who possess incredible resources and influence, choose to spend money and time on attempting to colonize hostile, uninhabitable planets hundreds of millions of kilometers away, especially considering that they and their loved ones (if they are lucky to live long enough) will die of aging-related causes such as heart disease, dementia, and cancer?

While I cannot speak for the aforementioned people, I believe there are several reasons why people in a position of power or wealth refuse to do much about supporting research on aging.

The first reason is that aging and death have been considered inevitable. Indeed, even though we have been able to put a human being on the Moon, we have been unable to prevent a single human being from aging. Enormously wealthy and successful people tend to be quite pragmatic, and so I imagine that they would not want to fund an endeavor or be a part of something they believed had no chance of success. However, we have evidence that we are making progress on this front, or at the very least, that reversing aging and implementing life-extension technologies are worthy endeavors.

In fact, in 2005, MIT Technology Review organized a panel of world-renowned experts (including molecular biologists) and offered a $20,000 prize to anyone who could disprove the SENS research program and demonstrate that reversing aging is not worthy of consideration. However, none of the contestants were able to do so. On the other hand, there is no evidence that human life is sustainable on any other planets in our solar system (while human life is perfectly sustainable on Earth), and by most professional estimates, it would take incredible technological advancements and financial resources to even enable people to temporarily stay on a planet such as Mars. We should also consider the fact that there have been no studies performed on the massive changes that would occur to the human body as a result of living on another planet.

Thus, it actually appears more realistic to work on reversing aging than it would be to work on colonizing other planets. But even if we are not able to completely reverse aging, what if we were able to slow aging? Wouldn’t it be desirable to have an additional five to 10 years of healthy life? Any progress we could make on life extension would be worth it, given that it would directly add healthy years to a person’s life. One thing is for certain – doing nothing ensures that very little will change, and that humans will more than likely continue living this average lifespan of 79 or so years (with very modest improvements over time), with much of it in the later years being in sickness and poor health.

Another reason for the refusal to fund aging and life extension research may be a rather pessimistic one. It is entirely possible that billionaires and governments are hedging their bets in the event that climate change or some other scenario causes wide-scale suffering (the likes of which have never been seen before) and a potential destruction of the planet, along with the rapid extinction of the human species. If that were the case, and Earth was about to be destroyed, it would make sense to pour resources into colonizing other planets. However, I think the likelihood of something like this occurring, at least in the near future, is extremely slim. Further, we have much evidence to support the fact that the planet could sustain a larger population and that technological improvements, as well as renewable energy, and seasteading, can prevent such an apocalyptic scenario from occurring. In fact, despite the challenges we are facing in terms of sustainability, we are making good progress, and it seems unreasonable to me to give all of this up, throw in the towel, and chase a pipe dream of living on another planet (when the one we have now is perfectly suited to human life). Also, given that we have the technology to save our planet from being engulfed in chaos and destruction, but do not currently have the technology to live on other planets, wouldn’t it make sense to save Earth first, rather than attempting to embark upon costly journeys to other planets, especially journeys that have little guarantee of success?

Yet another reason may be that many people, including those in a position of power, have bought into the idea of an afterlife. However, if we are completely honest with ourselves, there is no evidence that an afterlife exists, whereas there is evidence that we are making progress with reversing aging, even if that progress is arriving at a pace that is slower than we would have liked. With that being said, I would never want to deny anyone the right to believe in whatever they want. The question is, however, whether it is beneficial to adopt a zero-sum attitude to this matter. The fact is, believing in an afterlife and contributing to aging and life-extension research are not mutually exclusive. One can have any religious beliefs one likes, and subscribe to the idea that there is an afterlife, while also contributing to the beauty of existence here on Earth.

Finally, working on a cause such as reversing aging appears to not be as exciting as the prospect of exploring Mars, which is why people would rather update their LinkedIn (or Tinder) profile with “Entrepreneur” or “Swashbuckling Adventurer” or “Arms Dealer”, even, rather than “Gerontologist”.  In all seriousness, though, I have always found the idea of exploring faraway lands, as well as other planets, to be exciting. But if human beings are excited about exploring the unknown, shouldn’t we also be interested in exploring a process as complex as aging, especially given that there is much we still do not know about it? Also, the implications of making advancements in this field are huge. This is because the un-sexy work that gerontologists are doing will lead to us living longer, healthier lives, and so this very important work should not be ignored. In fact, it is a massive waste of resources to try to colonize uninhabitable planets at the expense of ensuring good health and longevity, when all of humanity battles with disease and death. It would even be more noble to focus our efforts on eliminating poverty (something that the Chinese government, for instance, has dedicated its efforts to).

I do not wish to dissuade anyone from exploring outer space, but neither should we avoid doing what needs to be done on our planet. I only wish to ask whether spending billions on space exploration is the best use of resources at our disposal, considering that there is still much work to be done here on Earth.

As mentioned previously, it should not be a zero-sum game. In an ideal world, we could dedicate resources to both aging research and space exploration. However, when the budget for NASA is $21.5 billion and the budget for aging research at the National Institute on Aging is $40 million, one has to start asking questions. Actually, one could argue neither budget is large enough, especially given that the U.S. Department of Defense budget is $686 billion.

Why do we spend hundreds of billions of dollars on missiles and bombs to combat a highly-exaggerated threat, when there is the absolute certainty that billions of people will suffer and then die, many of them prematurely, due to aging-related diseases such as heart disease, cancer, and dementia?

What makes exploring outer space so much more important than ensuring that billions do not die prematurely from aging-related diseases? Will picking up and holding red dust on a hostile, uninhabitable planet be more fulfilling than holding one’s child or loved one in one’s arms?

What does it say about our society when we are content to allow friends and family members to perish in undignified ways, while we dream about stockpiling as many weapons as possible, reliving fictional fantasies inspired by comic books and movies, and ignoring challenges here on Earth?

These are questions we must ask ourselves, and, more importantly, must demand those in power to ask themselves. At the end of the day, if we as a society are comfortable with the tradeoffs and decide en masse that dealing weapons and exploring outer space are more important than working on curing disease, reversing aging, and ensuring that everyone on Earth lives a dignified life, then we can rest assured knowing that we gave this most important of topics much consideration.

However, given the facts, I do not think we have reached that point yet. We have, however, reached a point where there is promise that we are making progress in fighting aging, and it is irresponsible and reckless to ignore these gains while entertaining fantasies of living on other planets. It makes little sense to try to live in a dignified manner on a dangerous, inhospitable, isolated planet that is not suitable for human life, when we are having difficulty living in a dignified manner here on Planet Earth (a planet that is perfectly suited to human life). The solution is not to dream about moving to Mars while leaving the elderly and unhealthy here to die. The solution is also not to increase defense funding, when we already have more weapons than we know what to do with. The solution is to help our brothers and sisters here on Earth live longer, healthier, more fulfilling lives. And thus, this is a call to action for those of you who are in a position of power or wealth and who can dedicate resources to ensuring that your loved ones, and everyone else’s loved ones, can live better.

One thing I would like to ask UHNW individuals and politicians is, what will you do with the great wealth, status, and power you have accumulated? Will you play golf and remark that “it won’t happen in my lifetime”? Or will you actually do something to ensure that your children won’t be doomed to a short life, during which they will suffer from debilitating disease and eventually die?

Arin Vahanian is the Director of Marketing for the U.S. Transhumanist Party / Transhuman Party.

Finally, Rejuvenation is a Thing! – Fresh Interview with Aubrey de Grey by Ariel VA Feinerman

Finally, Rejuvenation is a Thing! – Fresh Interview with Aubrey de Grey by Ariel VA Feinerman

logo_bg

Ariel VA Feinerman
Aubrey de Grey


This interview was originally published here

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage causes pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previous undamaged — young — state of an organism, we can really rejuvenate it! It sounds very promising, and so it is. And for some types of damage (for example, for senescent cells) it is already proved to work!

Today in our virtual studio, somewhere between cold, rainy Saint-Petersburg and warm, sunny Mountain View, we meet Aubrey de Grey, again! For those of you who are not familiar with him, here is a brief introduction.

Dr Aubrey de Grey is the biomedical gerontologist who researched the idea for and founded SENS Research Foundation. He received his BA in Computer Science and Ph.D. in Biology from the University of Cambridge in 1985 and 2000, respectively. Dr. de Grey is Editor-in-Chief of Rejuvenation Research, is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organizations. In 2011, de Grey inherited roughly $16.5 million on the death of his mother. Of this he assigned $13 million to fund SENS research.

Note: If you have not read “Ending Aging” yet I suggest you to do it as soon as possible, and to be more comfortable with the ideas we are discussing below I highly recommend you to read short introduction to SENS research on their web page. Also if you are interested in recent news and up-to-date reviews about [anti]ageing and rejuvenation research the best place to look for is Fight Aging! blog. Finally, if you are an investor or just curious, I highly encourage you to take a look at Jim Mellon’s book “Juvenescence”.

Interview

Ariel Feinerman: Hello, Dr Aubrey de Grey!

Aubrey de Grey: Hello Ariel — thanks for the interview.

Ariel Feinerman: How do you feel 2018 year? Can you compare 2018 to 2017 or early years? What is changing?

Aubrey de Grey: 2018 was a fantastic year for rejuvenation biotechnology. The main thing that made it special was the explosive growth of the private-sector side of the field — the number of start-up companies, the number of investors, and the scale of investment. Two companies, AgeX Therapeutics and Unity Biotechnology, went public with nine-digit valuations, and a bunch of others are not far behind. Of course this has only been possible because of all the great progress that has been made in the actual science, but one can never predict when that slow, steady progress will reach “critical mass”.

Ariel Feinerman: In 2017 SENS RF have received about $7 million. What has been accomplished in 2018?

Aubrey de Grey: We received almost all of that money right around the end of 2017, in the form of four cryptocurrency donations of $1 million or more, totalling about $6.5 million. We of course realised that this was a one-off windfall, so we didn’t spend it all at once! The main things we have done are to start a major new project at Albert Einstein College of Medicine, focused on stem cell therapy for Alzheimer’s, and to broaden our education initiative to include more senior people. See our website and newsletters for details.

Ariel Feinerman: What breakthroughs of 2018 can you name as the most important by your choice?

Aubrey de Grey: On the science side, well, regarding our funded work I guess I would choose our progress in getting mitochondrial genes to work when relocated to the nucleus. We published a groundbreaking progress report at the end of 2016, but to be honest I was not at all sure that we would be able to build quickly on it. I’m delighted to say that my caution was misplaced, and that we’ve continued to make great advances. The details will be submitted for publication very soon.

Ariel Feinerman: You say that many of rejuvenating therapies will work in clinical trials within five years. Giving that many of them are already working in clinical trials or even in the clinic (like immunotherapiescell and gene therapies) do you mean the first — maybe incomplete — rejuvenation panel, when you speak of early 2020?

Aubrey de Grey: Yes, basically. SENS is a divide-and-conquer approach, so we can view it in three overlapping phases. The first phase is to get the basic concept accepted and moving. The second phase is to get the most challenging components moving. And the third phase is to combine the components. Phase 1 is pretty much done, as you say. Phase 2 is beginning, but it’s at an early stage. Phase 3 will probably not even properly begin for a few more years. That’s why I still think we only have about a 50% chance of getting to longevity escape velocity by 2035 or so.

Ariel Feinerman: Even now many investors are fearful of real regenerative medicine approaches. For example pharmacological companies which use small molecules, like Unity Biotechnology, received more than $300 million, in much more favour than real bioengineering companies like Oisin Biotechnologies, received less than $4 million, even though the biological approach is much more powerful, cheap, effective and safe! Why is this so in your opinion, and when can we see the shift?

Aubrey de Grey: I don’t see a problem there. The big change in mindset that was needed has already occurred: rejuvenation is a thing. It’s natural that small-molecule approaches to rejuvenation will lead the way, because that’s what pharma already knows how to do. Often, that approach will in due course be overtaken by more sophisticated approaches. Sometimes the small molecules will actually work well! It’s all good.

Ariel Feinerman: Do you agree that the small-molecule approach is generally the wrong way in the future rejuvenation therapies? Because they have many flaws — especially their main mechanism via interference with human metabolism. Unlike them SENS bioengineering therapies are designed to be metabolically inert — because they just eliminate the key damage, they do not need to interfere with metabolism, so it is much easier than usual to avoid side effects and interactions with other therapies. They just eliminate the key damage, which means they are easier to develop and test — and much safer.

Aubrey de Grey: Ah, no, that’s too simplistic. It’s not true that small molecules always just “mess with metabolism” whereas genetic and enzymatic approaches eliminate damage. Small molecules that selectively kill senescent cells are absolutely an example of SENS-esque damage repair; the only thing against them is that it may be more difficult to eliminate side-effects, but that’s not because of their mode of action, it’s because of an additional action.

Ariel Feinerman: In recent years many countries gave the green light for regenerative medicine. Fast-track approval in Japan, for example, allows for emerging treatments to be used so long as they have been proven safe. The similar approach works in Russia. What about the EU or USA?

Aubrey de Grey: There’s definitely a long way to go, but the regulatory situation in the West is moving in the right direction. The TAME trial has led the way in articulating an approvable endpoint for clinical trials that is ageing in all but name, and the WHO has found a very well-judged way to incorporate ageing into its classification.

Ariel Feinerman: Do you think of working with USA Army? As far as we know they conduct research on regeneration and are very interested in keeping soldiers healthier for longer. And they have much money!

Aubrey de Grey: The Department of Defense in the USA has certainly funded a lot of high-impact regenerative medicine research for many years. I’m sure they will continue to do so.

Ariel Feinerman: Is any progress in the OncoSENS programme? Have you found any ALT genes? Is any ongoing research in WILT?

Aubrey de Grey: No — in the end that program was not successful enough to continue with, so we stopped it. There is now more interest in ALT in other labs than there was, though, so I’m hopeful that progress will be made. But also, one reason why I felt that it was OK to stop was that cancer immunotherapy is doing so well now. I think there is a significant chance that we won’t need WILT after all, because we will really truly defeat cancer using the immune system.

Ariel Feinerman: Spiegel Lab has recently published an abstract where they say they have found 3 enzymes capable of breaking glucosepane. Very exiting info! When can we hear more on their research? Revel LLC is a very secretive company.

Aubrey de Grey: They aren’t really being secretive, they are just setting up.

Ariel Feinerman: When can we see the first clinical trial of glucosepane breaker therapy?

Aubrey de Grey: I think two years is a reasonable estimate, but that’s a guess.

Ariel Feinerman: What do you think of the Open Source approach in rejuvenation biotechnology? The computer revolution in the early 2000s has taken place only because Open Source caused an explosion in software engineering!

We have many examples when Big Pharma buys a small company which has patents on technology and then cancels all research. In the Open Source approach you cannot “close” any technology, while everyone can contribute, making protocol better and everyone can use that without any licence fee! Anyway, there are countries where you cannot protect your patents. Maybe it will be better to make technology open from the beginning?

Famous biohacker Josiah Zayner said: “In the gene therapy world most treatments are easy to replicate or pirate because you can reverse engineer the DNA from scientific papers or patents. Same exact treatment, same purity and quality I could give to someone rejected from the clinical trial. The cost? Hundreds or a few thousand dollars at most. Same deal with immunotherapy.”

Aubrey de Grey: I think you’ve pretty much answered your own question with that quote. The technologies that will drive rejuvenation are not so easy to suppress.

Ariel Feinerman: Is the SENS RF going to begin new research programmes in 2019?

Aubrey de Grey: Sure! But we are still deciding which ones. We expect that our conference in Berlin (Undoing Aging, March 28–30) will bring some new opportunities to our attention.

Ariel Feinerman: What are your plans for 2019?

Aubrey de Grey: I’d like to say less travelling, but that doesn’t seem very likely at this point. Really my goal is just to keep on keeping on — to do all I can to maintain the growth of the field and the emerging industry.

Ariel Feinerman: Thank you very much for your answers, hope to see you again!

Aubrey de Grey: My pleasure!

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality. If you like Ariel’s work, any help would be appreciated via PayPal: arielfeinerman@gmail.com.

The 2020 Undoing Aging Conference Will Take Place May 21 to 23 in Berlin, Germany – Announcement by Undoing Aging

The 2020 Undoing Aging Conference Will Take Place May 21 to 23 in Berlin, Germany – Announcement by Undoing Aging

Undoing Aging


Editor’s Note: The U.S. Transhumanist Party features this announcement by the Undoing Aging Conference, a joint project between the SENS Foundation and the Forever Healthy Foundation,  originally published on their site on April 2, 2019.  The Undoing Aging Conference is focused on the cellular and molecular repair of age-related damage as the basis of therapies to bring aging under full medical control. Undoing Aging 2020 will once again bring together scientists and startups from around the globe, all pioneers in their respective fields, who are leading the charge in maintaining and restoring full health in old age. Such research is supported by the U.S. Transhumanist Party as part of our policy goals.

~ Brent Reitze, Applicant for Director of Publication, United States Transhumanist Party, April 4, 2019


April 2, 2019  Mountain View, California / Berlin, Germany

After the incredible success of the 2019 Undoing Aging Conference, SENS Research Foundation and Forever Healthy Foundation are pleased to announce Undoing Aging 2020, which will take place on May 21 – 23. As UA2019 was sold out with nearly 500 participants from over 30 countries, Undoing Aging 2020 will be moving to a larger venue.

Picture

The Undoing Aging Conference is focused on the cellular and molecular repair of age-related damage as the basis of therapies to bring aging under full medical control.  Among the 40 brilliant speakers at Undoing Aging 2019, there were giants in regenerative medicine such as: Dr. Nir Barzilai, Dr. Jerry Shay, Dr. Evan Snyder, Dr. Judith Campisi, and many more. Undoing Aging 2020 will once again bring together scientists and startups from around the globe, all pioneers in their respective fields, who are leading the charge in maintaining and restoring full health in old age. To accommodate the exciting growth of the emerging rejuvenation biotechnology industry, Undoing Aging 2020 will add a dedicated forum and exhibition space for rejuvenation biotech companies to present themselves to prospective investors and industry partners.

Additionally, the 2020 conference will add a special “Rejuvenation Now” session highlighting the first generation of human rejuvenation therapies that are either currently in clinical trials or are available today.

Undoing Aging 2020 is not only open to the scientific community, but also welcomes startups, investors, the general media, and all interested members of the broader rejuvenation movement. The conference will feature a student poster session showing the work of innovative undergraduate and graduate students in the field of damage repair.

“The accelerating rate of progress in rejuvenation research is now unmistakeable at all levels: publications, transfer into rapidly-funded startup companies, and even into the clinic. One marker of this is the worldwide proliferation of conferences focused on it. But I have no doubt that Undoing Aging will maintain its pre-eminence among them, with its strong focus on the most cutting-edge science, its long history dating back to my first Cambridge conference in 2003, and above all its steadfast support from Forever Healthy,” said Dr. Aubrey de Grey, CSO of SENS Research Foundation.

“We are very excited to work with SENS on Undoing Aging,” stated Michael Greve, founder, and CEO of the Forever Healthy Foundation. “Forever Healthy has two key goals for this conference: To support the remarkable scientific community and the rejuvenation biotechnology startups already working on repair of age-related damage and to create an unique opportunity to experience that bringing aging under complete, genuine medical control is realistic, achievable, and, indeed, beginning to happen.“


About Forever Healthy Foundation
Forever Healthy is a private, non-profit initiative with the mission to enable people to vastly extend their healthy lifespan and be part of the first generation to cure aging.

Thru its ‘Rejuvenation Now‘ and ‘Maximizing Health‘ initiatives, Forever Healthy seeks to continuously identify and evaluate new rejuvenation therapies on risks, benefits, and potential application and to harness the enormous wealth of the world’s cutting-edge medical knowledge to empower informed decisions about health and well-being.

In addition, Forever Healthy supports the development of rejuvenation therapies that undo the damage of aging by funding basic research, bringing together the world’s leading scientists at the Undoing Aging conference and supporting startups that work on actual therapies for human use. For more information, please visit forever-healthy.org

About SENS Research Foundation
SENS Research Foundation is a 501(c) nonprofit that works to research, develop and promote comprehensive regenerative medicine solutions for the diseases of aging. The foundation is focused on a damage-repair paradigm for treating the diseases of aging, which it advances through scientific research, advocacy, and education.

SENS Research Foundation supports research projects at universities and institutes around the world with the goal of curing such age-related diseases as heart disease, cancer, and Alzheimer’s disease. Educating the public and training researchers to support a growing regenerative medicine field are also significant endeavors of the organization that are being accomplished through advocacy campaigns and educational programs. For more information, please visit sens.org

To stay updated on Undoing Aging, you can follow their facebook page.

Interview with Dr. Aubrey de Grey by Yuri Deigin

Interview with Dr. Aubrey de Grey by Yuri Deigin

logo_bg

Yuri Deigin
Aubrey de Grey


Editor’s Note: The U.S. Transhumanist Party is pleased to publish this in-depth interview by Yuri Deigin of Dr. Aubrey de Grey, the U.S. Transhumanist Party’s Anti-Aging Advisor. Herein Dr. de Grey offers original, in-depth insights regarding the current state of research and public opinion regarding the pursuit of advances in rejuvenation biotechnology that will hopefully achieve significant life extension, one of the U.S. Transhumanist Party’s Core Ideals, within our lifetimes.  This interview was originally published in the Russian language here. The English-language version was first published by one of the U.S. Transhumanist Party’s Allied Organizations, the Life Extension Advocacy Foundation (LEAF), here

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, July 29, 2018

Note from the Life Extension Advocacy Foundation (LEAF): Today we have an interview with Dr. Aubrey de Grey from the SENS Research Foundation. This interview conducted by Yuri Deigin, CEO at Youthereum Genetics, was originally published in Russian language and he has kindly translated it into English so our audience can enjoy it, too.


Yuri: Aubrey, thank you very much for agreeing to this interview. Why don’t we dive right in? I am sure everybody asks you this: how and when did you become interested in aging, and when did you decide to make it your life’s mission to defeat it?

Aubrey de Grey: I became interested in aging and decided to work on it in my late 20s, so, in the early 1990s. The reason I became interested was because that was when I discovered that other biologists were almost all not interested in it. They did not think that aging was a particularly important or interesting question. I had always assumed, throughout my whole life, that aging was obviously the world’s most important problem. I thought that people who understood biology would be working on it really hard. Then, I discovered that wasn’t true and that hardly any biologists were working on it. The ones that were weren’t doing it very well, not very productively as far as I could see. I thought I’d better have a go myself, so I switched fields from my previous research area, which was artificial intelligence.

Yuri: By the way, do you think there are disproportionately many people from computer science in aging research these days?

Aubrey de Grey: There are a lot, and there are lots of people who are supporting it. Most of our supporters are, in one way or another, people from computer science or from mathematics, engineering, or physics. I think the reason why that has happened is actually very similar to the reason why I was able to make an important contribution to this field.

I think that people with that kind of background, that kind of training, find it much easier to understand how we should be thinking about aging: as an engineering problem. First of all, we must recognize that it is a problem, and then we must recognize that it is a problem that we could solve with technology. This is something that most people find very alien, very difficult to understand, but engineers seem to get it more easily.

Yuri: So do you think that people who don’t have such a background, this way of thinking, have a chance of understanding the importance of this problem, or are they better off letting people with an engineering mindset figure it out?

Aubrey de Grey: Well, of course, there is always an overlap. The reason I spend so much time doing interviews and running around the world giving talks is precisely in order to help people, for whom this is not obvious, to think about these things. For any new idea or any new way of thinking, there are always people who understand it first and who then communicate that knowledge to other people.

Yuri: Right. And you have been running around giving talks for a very long time, as I understand. It’s been, what, twenty years?

Aubrey de Grey: Well, at least 15 years that I’ve been doing a lot of it.

Yuri: So between the time in your twenties, when you realized that aging is not something that’s being adequately covered by biologists, and the time when you decided to have a go at it yourself, how many years have passed? And can you give a bit more background on when you founded SENS and what SENS is?

Aubrey de Grey: Sure! The year in which I switched fields properly is probably 1995. For the next five years, I was basically just learning. I was going to all the conferences, getting to know the right people, leaders in the field. Learning a lot of what was known and doing a huge amount of reading, of course. The big breakthrough came in the summer of 2000 when I realized that comprehensive damage repair was a much more promising option then what people had been doing before. Since then, it has been a matter of persuading people of that.

There were a few years when I was just ignored and people thought I was crazy and didn’t think I made any sense. Then, gradually, people realized that what I was saying was not necessarily crazy. Some people found it threatening, so in the mid-2000s, I had a fair amount of battles to fight within academia. That’s normal; that’s what happens with any radical new idea that is actually right, so that happened for a while. This decade, it’s been rather easier. We founded the SENS Foundation; we’ve started getting enough donations into the SENS Foundation to be able to do our own research, both within our own facilities as well as funding research at universities and institutes. Gradually, this research had moved far along enough that we could publish initial results. Over the past two or three years, we’ve been able to spin off a bunch of companies that we have transferred technology to so that they can actually attract money from investors.

There are, of course, an awful lot of people out there who believe in what we are doing, but they fundamentally don’t like charities; they don’t like to give money away. They have been waiting for the point when these projects move far enough ahead that they are investable, and that’s resulting in much more money flowing into these areas.

Yuri: This is a good point you bring up – that a lot of wealthy people for some reason aren’t prepared to spend money on fundamental research on aging but somehow desire a financial return on their investments in this field. Do you know why that is? Why can’t they realize that in their position, it is much more rational to try to convert their wealth into something much more valuable that they cannot yet ever get back, which is years of healthy life. Why do they try to also make money on this research?

Aubrey de Grey: Well, it’s not really a rational decision, and it’s different for every individual, whether it’s for that reason or any other. Let me first say that it actually seems less of a problem in Russia. Our single biggest donor at the moment is Vitalik Buterin, the guy who created Ethereum, who is a Canadian of Russian heritage. Another major donor of ours is a guy named Michael Antonov, one of the co-founders of Oculus. I think maybe Russians have less of a problem with this. However, in general, the kind of people who have a lot of money and who are also visionary enough and understand technology enough, they tend to be the kind of people who made their money by doing certain things; they got it through the capitalist system. So, those kinds of people are inherently biased in favor of that system and against philanthropy. Then, of course, there are many other reasons. There are some people who won’t give us money because they don’t think it’s a good idea to defeat aging. There are plenty of people who want to give us money, but their wives think it’s crazy. I am not kidding! There are at least a couple of our major verbal supporters who I know for a fact that that’s why they are not giving us significant amounts of money. Another reason, I think, is that some people just have overly big egos, so they think they can do better than us even when they can’t.

Yuri: Let me probe you a little bit more on this. You brought up wealthy Russians and people who think they can have a go at aging themselves. Would Sergey Brin qualify as one of those people who decided they know better and founded their own company, Calico, for precisely this reason?

Aubrey de Grey: Yeah, I had a funny feeling you might ask me about that. I have a very low opinion of Calico. The fundamental reason for this is because of Larry and Sergey. In fairness to Sergey, my understanding is that Calico is mainly a Larry project, or at least more so than a Sergey project. Of course, they are both on the Board of Directors, and they both share the responsibility. At the end of the day, Calico is a catastrophe, and it’s their fault. They just created it wrongly.

They’ve known me for fifteen years; they could easily have told me, “Listen. We don’t like charity. We want to create a company, and we want you to run it,” and I would’ve said “No problem!” and they knew that. Instead, they decided to be more traditional about this. I don’t know why. Maybe they don’t like people who have beards.

The fact is that they made an absolute catastrophe of it. They started out reasonably sensibly by hiring Art Levinson, the world’s best biotech CEO, but what they didn’t do was tell him what to do next. They gave him a job to cure aging, and he doesn’t have the slightest idea how to cure aging, and he knows that he doesn’t have the slightest idea. So, he hired someone who he thought would have an idea how to do it and made him Chief Science Officer. Unfortunately, he didn’t know how to make that decision either, so he hired completely the wrong person. He hired a completely inveterate basic scientist, David Botstein, who is a fantastic scientist but who doesn’t understand technology. In fact, he went on record saying that he doesn’t have a translational bone in his body. You don’t get that sort of person to run an outfit that’s supposed to be solving a technological problem. Sure enough, they are doing fantastic research that will understand aging better and better as time goes on over the next century, but they will never, ever, if they follow their current strategy, actually make any kind of difference in how long people can stay healthy and, therefore, how long they can stay alive.

Yuri: Why do so few people have a sense of urgency that we need to do everything possible to combat aging within our lifetimes and not centuries to follow?

Aubrey de Grey: There are two answers to that. The David Botstein answer, the Calico answer, is that they just don’t understand the idea of knowing enough. People who work on basic science understand how to find things out, but that’s all they understand. For them, the best questions to work on are the questions whose answers will simply create new questions. Their purpose in life is to create new questions rather than to use the answers for a humanitarian benefit. They don’t object to humanitarian benefit, but they regard it as not their problem. You can’t change that. Botstein is a fantastic scientist, but he’s in the wrong job.

The other part of your question, why people, in general, do not regard aging with a sense of urgency, has a different answer. People weigh up the desirability and the feasibility. Remember that everyone has been brought up to believe that aging is inevitable, I mean completely inevitable in the sense that stopping it would be like creating perpetual motion. If the probability of doing something about this thing is zero, then the desirability doesn’t matter anymore. So, under that assumption, we really ought to put it out of our minds and get on with our miserably short lives. That’s all we can do.

Yuri: So it’s a case of learned helplessness?

Aubrey de Grey: Yes, exactly, it is learned helplessness, and it’s a perfectly reasonable, rational thing to be thinking until a plan comes along that can actually solve the problem: a plan that demonstrates that we actually might be within striking distance of genuinely solving the problem. That only happened quite recently. Of course, I have a huge mountain to climb to persuade people that we have crossed the boundary from this being just a recreational, exploratory field to it being a technological, translational field.

Yuri: Have you had success in the past fifteen years that you’ve been climbing this mountain; have you seen that the public’s perception has greatly improved?

Aubrey de Grey: Absolutely. Things have got hugely easier. I mean, there is a huge amount of the mountain still to climb, but we have climbed a hell of a lot of it. Just the nature of a conversation, the kinds of people who want to hear about this. The way in which credentialed scientists with reputations that they need to protect are willing to embrace this. We could not conceivably have created the scientific advisory board that we have now fifteen or even ten years ago. There are thirty people there who are all world-leading luminaries in their fields, and they are all signed up very explicitly to the ideas that comprehensive damage repair is a thing and that it actually has a good chance of genuinely defeating aging. So, I’ve won the scientific argument.

People are even reinventing the whole idea of comprehensive damage repair and pretending it’s a new idea. Five years ago, there was a paper called “The Hallmarks of Aging” published by five very senior professors in Europe. That paper is saying pretty much exactly what I said eleven years before it. The key difference is that unlike my work, this work is being noticed. In fact, it’s been more than noticed. It’s become the definition of what’s useful work to do. This one paper that was only published 5 years ago has been cited more than 2,000 times already. There’s no question that it’s going to be, by far, the most highly cited paper in the whole of the biology of aging this decade, and it has the same ideas that I put forward the previous decade. So that’s fantastic. I’d like to have more credit, but I really don’t care about that; what I care about is that the idea is now in the mainstream.

Yuri: You mentioned your plan for comprehensive damage repair; could you elaborate a little bit more on what the plan actually is?

Aubrey de Grey: Sure. The idea is to emulate what a mechanic would do to maintain a car. We know that this works; there are cars over a hundred years old that are still running and are doing so just as well as when they were built. We know that they are not doing that because they were designed to last that long; they were probably designed to last only ten years. They’ve vastly exceeded their warranty period, and they’ve done so because of comprehensive damage repair.

The only reason that we can’t do this to the human body already is that the human body has more complexity and more types of damage. However, it’s a manageable amount of complexity. In particular, the big thing that led me through to this route was when I realized back in the year 2000 that we could classify all of the types of damage that the body accumulates into seven major categories, for each of which there’s a generic approach to fixing it.

For example, one of the categories is cell loss, which is when cells are dying and not being automatically replaced by the division of other cells. The repair, of course, is stem cell therapy. We simply put cells into the body that have been pre-programmed into a state where they know what to do to divide and transform themselves into replacements for the cells that the body is not replacing on its own. That’s just one of the seven types of damage that I enumerated, and, of course, that direction is very well advanced. We have hardly ever done any work in stem cells because we didn’t need to; other people are doing all of the work that’s necessary.

The other six categories are more neglected; they are in an earlier stage. That’s why we created the SENS Foundation to push them forward. We’ve been very successful. A number of those things have reached a point where we could actually create a startup company and transfer technology into it, so it would attract investment from the kinds of people I was mentioning earlier who don’t like to give money away.

Yuri: So you’ve created several startups, could you elaborate on the ones that have the most potential?

Aubrey de Grey: They’re all doing pretty well. Let me just focus on one as an illustration: Ichor Therapeutics. Ichor is all about macular degeneration, which is, of course, the number one cause of blindness in the elderly. The category in SENS that it comes under is the accumulation of molecular waste products inside cells. They accumulate in different cells in many different ways. It’s a side effect of their normal operation. Different cells accumulate different types of waste products. One of them is a byproduct of vitamin A that is created in the eye as a side effect of the chemistry of vision, and it poisons cells at the back of the eye called retinal pigmented epithelial cells.

What we’ve done is identify enzymes in bacteria that are able to break down this toxic waste product. If they can break it down, the waste product no longer accumulates. We have identified the genes for these enzymes, and we’ve been able to incorporate them into human cells in such a way that they still work. Ichor is pursuing that, and it will probably soon start clinical trials to pursue this as a cure for macular degeneration later this year. This is dry macular degeneration, the major form in the elderly.

Yuri: Could you tell us about some other startups that you’ve spun out from SENS?

Aubrey de Grey: Sure. Ichor was part of LysoSENS. Another one that we’ve spun off is called AmyloSENS. We’ve got a problem of waste products that accumulate not inside the cells but in the spaces between the cells. In theory, those waste products are easier to get rid of, because they’re inherently easier to break down. The way we do it is by actually getting cells to swallow this stuff, internalize it, and then break it down. There are various ways to trick the immune system into doing that. In the case of Alzheimer’s, this was done some years ago, and it’s already working in clinical trials.

Our focus has been on other types of waste products that are similar to the plaques in Alzheimer’s disease, but they consist of different proteins, and they occur in different tissues. We’ve been able to fund a group in Texas that was able to create some antibodies that could break down the extracellular garbage which is actually the number one killer for really old people, people over the age of 110. That’s now been turned into a company.

Another example is a company that’s being run by the person who used to be our Chief Operating Officer. It’s a company focused on organ preservation. It’s well-known that there’s a huge shortage of organs for transplants. Many thousands of people die every year on waiting lists, just waiting for an organ that is sufficiently immunocompatible for them and that happens to be donated by somebody who dies really nearby. That is a requirement for that organ to be given to the recipient fast enough before it breaks down. We want to solve that transport problem and create whole banks of organs with a variety of immunological profiles. In order to do that, we need to be able to freeze them, but in order to freeze them, we need to develop ways that will not cause damage to the organ in the process of freezing. The company we spun out has got a wonderful new technology that is really good at that.

Yuri: Is that Arigos? The company that uses helium persufflation for cryopreservation?

Aubrey de Grey: That’s the one. You are very well-informed!

Yuri: Can you comment on Human Regeneration Biotechnologies?

Aubrey de Grey: That was our first spin-off, actually. It’s now got a shorter name. It’s called Human Bio, and it’s run and funded by a guy named Jason Hope, who was, for some time, one of our most major donors. He’s now focusing his funding on the company. It was initially created to do something very similar to what we’re doing with Ichor in macular degeneration. In that case, it was for atherosclerosis. The target was not this byproduct of vitamin A; instead, it was oxidized cholesterol, and they have kind of run into the sand a little bit on that. We’re trying to reactivate it right now, but they’ve got other interests as well. They’re working on senolytics, drugs that will kill senescent cells. They are potentially going to be quite a big player in a number of different areas at SENS. At the moment, they are a bit stealthy; they don’t need money, because they are funded by this wealthy guy. They are not going around telling everyone all that much about what they are doing, the way that most of these companies are.

Yuri: What about enzymes that are meant to break glucosepane crosslinks? Is there a startup for that?

Aubrey de Grey: We have funded research on glucosepane at Yale University. We’ve funded that for about 4-5 years now. They had a fantastic publication 2 years ago, where they made a huge breakthrough in this area. Essentially, they first had to be able to make glucosepane in large quantities without a high expense. That was published in Science; that’s our highest-profile publication in any area. It was important because it allowed them to proceed with obvious things, such as identifying enzymes that could break it. That was very successful: they have identified half a dozen enzymes that seem to be promising. For a couple of those enzymes, there’s a pretty good understanding of how they work. Now is the right time to create a company out of that, and that’s exactly what’s happening. That company is a month or two from being incorporated, and its funding is established.

Yuri: Great, so we’ll be on the lookout for an announcement for that company to be spun off.

Aubrey de Grey: It’s going to be called Revel.

Yuri: Ah, let’s hope we can one day revel in its accomplishments.

Aubrey de Grey: That’s right!

Yuri: We might have gotten a bit too deep into science for a casual reader. Maybe we can step back and you could elaborate on what you think actually causes aging? I know there are different schools of thought on that in the scientific community so maybe you can share your perspective?

Aubrey de Grey: I get rather sick of this question, actually. You know, there’s nothing that “causes” aging. What causes the aging of a car? You wouldn’t ask that question: you know that that’s a stupid question. All I really want to tell you is that the aging of a living organism is no different fundamentally than the aging of an inanimate machine like a car or an airplane. Therefore, questions like “What causes aging?” are no more sensible for a living organism than they are for a car.

Yuri: If the underlying causes of aging are the same for all organisms, why do you think there’s such a big difference in lifespan between different species: some live for just a few months, while others for centuries?

Aubrey de Grey: The analogy with inanimate machines like cars works perfectly well there too. Some cars are designed to last 50 years, like Land Rovers, for example, but most cars are only designed to last 10 years. It’s just the same for living organisms. Some living organisms have evolved to age more slowly. A perfectly good question is what causes evolution to create this disparity? Some species in a particular ecological niche, say, at the top of the food chain have an evolutionary imperative to age slowly, whereas species that get eaten a lot don’t need to have good anti-aging defenses built into them. That’s really the basis for why there is this variation in the rate of aging across the living world.

Yuri: The more interesting question is when will humanity actually conquer aging?

Aubrey de Grey: It all depends on how rapidly research goes, and that depends on money. Which is why when people ask me, “What can I do today to maximize my chances of living healthy and for a long time?” I tell them to write me a large check. It’s the only thing one can do right now. The situation right now is that everything we have today – no matter how many books are written about this or that diet or whatever – is that basically, we have nothing over and above just doing what your mother told you: in other words, not smoking, not getting seriously overweight, and having a balanced diet. If you adhere to the obvious stuff, you are doing pretty much everything that we can do today. The additional amount that you can get from just any kind of supplement regime, diet, or whatever is tiny. The thing to do is hasten the arrival of therapy for the betterment of what we have today. That’s where the check comes in.

Yuri: Some people probably couldn’t afford to write a sizable check; maybe they can do something else?

Aubrey de Grey: What I always say in relation to that is that the poorer you are, the more people you know who are richer than you. Therefore, the less you can do in terms of writing your own check, the more you can do in terms of persuading other people to write checks.

Yuri: So it’s activism, being vocal about aging research?

Aubrey de Grey: Absolutely. It’s activism and advocacy: it’s all about spreading the word and raising the level of people’s understanding of the fact that aging is the world’s biggest problem.

Yuri: Do you see any increase in funding for longevity research over the past 10 years?

Aubrey de Grey: Things have certainly improved. I mean, there’s more money coming into the foundation, a little bit more money, but there’s a lot more money coming into the private sector, into the companies I mentioned and other companies that have emerged in parallel with us. The overall funding for rejuvenation biotechnology has increased a lot in the past few years, and we need it to increase a lot more. The private sector can’t do everything, not yet, anyway. There will come a time when SENS Research Foundation will be able to declare victory and say, “Listen, everything that needs to be done is being done well enough in the private sector that we no longer need to exist.” For the moment, that’s not true. For the moment, there are still quite a few areas in SENS that are at the pre-investable stage where only philanthropy will allow them to progress to the point where they are investable.

Yuri: It’s great to hear that there is money coming into SENS because from what I understand, there was a time when you had to use your own money to fund the foundation, is that correct?

Aubrey de Grey: That’s right. I inherited 16.5 million dollars of which I donated 13 million. That was back in 2012 before we had any projects that we could spin out into companies. That inheritance was very timely, but the point is that I would still do it even now. If my mother died today, I’d probably do the same thing, because the foundation is still the engine room of the industry. For the foundation, it’s kind of double aid. The more progress we make, the more credible the whole idea becomes, which, of course, improves our ability to bring in money. We are also creating new opportunities where you can invest rather than donate, so it’s kind of a disincentive to donate. There’s a balance there. Of course, every donor is different; some donors are more philanthropically inclined than others.

Yuri: From what I understand, you’ve had some high-profile donors like Peter Thiel who’s been supporting the foundation for a number of years. Is he still a supporter?

Aubrey de Grey: Peter started supporting us in 2006, 12 years ago. He’s actually pretty much phased out now. I understand that. Ultimately, he’s much more comfortable with investing than donating. He wanted to be sure that we’re actually creating something, and sure enough, we are. We speak all the time to his investment advisors, who focus on investment opportunities in the biotech sector, especially in the anti-aging sector. I’m sure that he will continue to contribute financially to this field, though the contributions are quite likely to be focused more on the companies rather than the foundation.

One way in which Peter is donating indirectly right now is that he funded Vitalik Buterin four years ago as a Thiel Fellow under the 20 Under 20 program. That was how and where Vitalik created Ethereum, which of course made Vitalik very wealthy, and Vitalik donated 2.5 million dollars to us a few months ago. He is very much philanthropically inclined. So, Peter is still donating to us by proxy.

Yuri: What about his PayPal co-founder, Elon Musk? Has Peter ever connected you two or maybe you spoke to Elon yourself?

Aubrey de Grey: I have indeed met Elon many years ago, probably 10 years ago. I haven’t met him recently. In general, I think it’s quite unlikely that Elon will get heavily involved in this just because he’s got other things to focus on. It’s a bit like Bill Gates, though in the opposite direction. Bill Gates has pretty much explicitly said that his priority is to help the disadvantaged. He’s much more interested in mosquito nets in sub-Saharan Africa and less interested in people who already have advantages. Elon is kind of at the other end of the spectrum. He is more of a “toys for boys” kind of guy. He’s more interested in space travel and solar energy and so on. The thing is I don’t want to take money away from either one of those two people. I think that both of them are doing fantastic work that really matters for humanity. There are plenty of other people, such as Peter Thiel, who are in the middle, who do understand the enormous value of defeating aging, and who have the vision to understand who is likely to be able to do it, so I don’t want to distract either Elon or Bill from what they’re already doing.

Yuri: Do you think Elon might be moving in a somewhat different direction of mind uploading for circumventing aging?

Aubrey de Grey: Yes and no. I kind of pay attention to what he is doing with Neuralink and what people like Bryan Johnson are doing with Kernel. I am closely connected with those groups. I know a lot of people in that space. At the end of the day, I think they know as well as I do that it’s very, very speculative. Ways in which we might transfer our consciousness, our personality to different hardware, while still satisfying ourselves that we are genuinely the same person after the transfer rather than just creating a new person – those are pretty speculative ideas. There is a long way to go to make them even slightly comparable to something that competes with medical research.

Yuri: So you think that mind uploading, even if theoretically possible, is still far off in the future as something feasible?

Aubrey de Grey: It’s always dangerous these days to say that such and such technology is definitely not going to be developed until some particular number of years in the future. At some point, people said that the game of Go would never fall to a computer, but then AlphaGo came along. However, it is a certainty that the distance that we have to go is much larger in the case of mind uploading than in the case of the boring “wet approach” of medical research.

Yuri: Speaking of AlphaGo and AI, some researchers in the aging space are working AI as a kind of proxy to help us solve biology. What do you think about that approach?

Aubrey de Grey: There is definitely an intersection there. I actually know a lot of people who are at the cutting edge of AI research. I actually know Demis Hassabis, the guy who runs DeepMind, from when he was an undergraduate at Cambridge several years after me. We’ve kept in touch and try to connect every so often. I think it’s reasonable to view these things as very linked. I certainly agree with you that there are some AI researchers who are working on AI precisely because they don’t trust people like me to get the job done by the “wet approach”. That’s fine; they may be right, and if they are right, I’ll be just as happy for them to save my life rather than me saving their lives.

Yuri: Do you think we’re close to having AI help us with biology, or do you think it’s still years away?

Aubrey de Grey: There are some medical AI startups that are looking at ways to use machine learning against aging. One of the most prominent is InSilico Medicine led by Alex Zhavoronkov, which is largely focused on identifying drugs that can work in particular ways. It’s a very important area. I’m sure that we will use AI a lot in medical research in general. Whether we will go as far as supplanting medical research with the mind uploading approach, that’s a different question altogether.

Yuri: One of your most famous quotes is that you think that a person who will live for over 1,000 years has already been born. Do you still think so and what are the chances for, say, a 50-year-old person today to reach what you call Longevity Escape Velocity?

Aubrey de Grey: I certainly think what I used to think, and it is indeed as a result of the concept of the longevity escape velocity. I do not believe that even within the next hundred years, we’re likely to develop therapies that can completely 100% succeed in repairing all the damage that body does to itself in the course of its normal operation. I do believe that we have a very good chance within the next 20-25 years of fixing most of that damage, and most are good enough because it buys time to fix a bit more and then a bit more. The reason it buys time because the body is set up to tolerate having a certain amount of damage without significantly declining function. I think we’ve got a very good chance of getting to that point while we are staying one step ahead of the problem by improving the comprehensiveness of the therapies faster than time is passing.

Yuri: So that is essentially the definition of Longevity Escape Velocity, right?

Aubrey de Grey: Yes, to be precise, Longevity Escape Velocity is the minimum rate at which we will need to improve the comprehensiveness of these therapies subsequent to the point where we get the first ones working so they get us a couple of decades of extra life. The good news is that longevity escape velocity goes down with time, because the more we can repair, the longer it takes for the stuff we can’t repair to become problematic.

Yuri: If you had unlimited funding, how long do you think it would take for us to reach Longevity Escape Velocity or the technology necessary for it?

Aubrey de Grey: It’s actually pretty difficult to answer that question because the amount of funding is kind of self-fulfilling. Every increment of progress that we achieve makes the whole idea more credible, makes more people more interested, and makes it easier to bring in the money to make the next step. I think that, at the moment, unlimited funding could probably let us increase our rate of progress by a factor of three, but that does not mean that we will change the time to get to Longevity Escape Velocity by a factor of three, because when we get even a little bit closer to it, it will be easier to get money, and that factor of three will come down. I think that right now, if we got like a billion dollars in the bank, then, in the next year, we would probably do the same amount of work and make the same amount of progress that we would otherwise make in the next three years. In the year after that, only two years of progress, and in the year after that, only a year and a half, and so on. What that adds up to is that if I got a billion dollars today, we would probably bring forward the defeat of aging by about 10 years. And it’s a lot of lives, maybe 400 million lives.

Yuri: Yes, given that 100,000 people die per day from aging-related causes, it’s a lot of lives.

Aubrey de Grey: Yup.

Yuri: So, you said, “if I had a billion in the bank”. The Chan/Zuckerberg Initiative – they said they are prepared to spend 3 billion dollars to eradicate all diseases by 2099. Maybe they can set aside 1 billion for your work. Did you ever communicate with them?

Aubrey de Grey: All I can say is that my email address is not very difficult to find online. No, we have not been in talks, and they have not made it easy for us to get in touch with them.

Yuri: That’s disappointing, especially given your close geographic proximity and the fact that you probably have an overlapping social and professional network.

Aubrey de Grey: Yes, it is very disappointing. Of course, you can argue that it’s not quite as disappointing as the situation with Calico. Because in the case of Calico we are talking about people with equally deep pockets who have known me for 15 years and who have already decided that aging itself is a thing to target. Zuckerberg, first of all, he never met me, God knows how much he knows about what we even do. Certainly, none of the pronouncements from the Chan/Zuckerberg Initiative indicate that they even understand that aging is a medical problem. They may have a long way to get to the point of even considering this.

Yuri: Yes, they do use some odd phrasing, speaking about “eradicating all diseases”, considering that all age-related diseases have one root cause – the aging process.

Aubrey de Grey: This is part of the problem. People simply should not be using the word “disease” for age-related diseases. The fact is that if a medical condition is age-related, then it’s part of aging, as it mainly affects people who have been born a long time ago. That means that it shouldn’t be described using the terminology that makes people think that it’s a bit like infection. People will often tell each other that I say that aging is a disease or a collection of diseases. But that’s completely wrong: I say the exact opposite. I say that not only should the word “disease” not be broadened to include aging, it should be narrowed to exclude the so-called diseases of old age.

Yuri: So that would be cancer, Alzheimer’s and all kinds of heart conditions…

Aubrey de Grey: Yes, and atherosclerosis, everything that’s bad for people who have been born a long time ago but that very rarely, if ever, affects people in young adulthood.

Yuri: So would you call Alzheimer’s a pathology then? If it’s not a disease?

Aubrey de Grey: I would call it part of aging. The problem is the idea of carving up little bits of aging, pretending that they are separate from each other. They’re not; they’re all parts of – consequences of – a lifelong accumulation of damage.

Yuri: Interesting. There’s been quite a large ongoing effort among the aging research advocacy community to persuade WHO to include aging as a disease in its International Classification of Diseases.

Aubrey de Grey: Yes, it seems to be going quite well, and I am very pleased to see that this effort is being led by some Russians: Daria Khaltourina, who is very much Russian, and by Ilia Stambler, who is from Israel but of Russian extraction. Again, the Russians seem to “get it” much easier than most people and it’s very heartening to me.

Yuri: Do you support this inclusion of aging into ICD as a separate disease?

Aubrey de Grey: The ICD is a little bit different. The “D” in the ICD stands for disease, but the purpose of the ICD is to determine which things medicine should be attacking. It really should be the IC of “medical conditions”. We should be distinguishing medical conditions that are extrinsic, such as infections, from the ones that are intrinsic consequences of being alive, that are age-related. I believe that it would be better if we did that by using different words, but medical conditions of old age are medical conditions, and they ought to be listed in the ICD.

Yuri: I see. Thanks for clarifying! Can I ask you about your new role with Michael West at AgeX and BioTime?

Aubrey de Grey: Michael West and I have been friends for 20 years, and, of course, we have very closely aligned goals in life. We’ve never been able to work together in a formal capacity until now, but we’ve been very much mutual admirers. I’ve always looked up to Mike as someone who, way before anyone else, did something that I thought was impossible with the creation of an actual gerontology research company, as was the case with Geron 20 years ago. He’s done it three times by now: Geron, then Advanced Cell Technology, and now with BioTime.

AgeX is a new subsidiary of BioTime that is about to be floated independently on the stock market. The goal, of course, is very much our goal: damage repair. The area that AgeX is focusing on is stem cells. There are two main themes within AgeX. One of them is stem cell therapy in the normal sense: in other words, injecting stem cells. The particular differentiator that AgeX and BioTime have is the ability to create particularly pure populations of a particular type of stem cells, ones that will only do what you want them to do – they are lineage committed in a particular way. That’s something that other organizations don’t have the ability to do nearly so well, and it’s very important; you want to be able to give the people the type of stem cells they need and not give them the other ones in the wrong place, which might do damage. That’s one side.

The other side of AgeX, which is at a much earlier stage of development, so you shouldn’t be looking out for any products on the basis of this yet, is induced stemness. In other words, it’s giving an organism not stem cells per se but rather reagents that would cause cells already in the body to revert a little bit, become more stem-like and be more able to regenerate the tissues. We already have one compound that has this effect, but we have lots and lots more work to do that will allow this to be done safely and effectively.

Yuri: Is this based on Michael West’s work in planarians, axolotls and other animals that demonstrate the ability to regenerate lost limbs even in adulthood?

Aubrey de Grey: No, not really. Certainly, we pay attention to the regenerative capacity of lower organisms, but the main focus of AgeX’s work is on what happens in early development in mammals, particularly the phase change that happens during early development, which we call the embryonic-fetal transition. It’s a little bit imprecise; we are still characterizing it, and there’s still work to do and stuff to be understood. Basically, what happens is that over a relatively short period of time during development, there is a change in the level of expression in a number of genes; some of them go up, and some go down. The particular change that happens across the entire embryo seems to coincide with – and we think it’s causally related with – the loss of regenerative capacity. In other words, before this transition, a particular type of injury to the embryo is entirely reversed by regeneration, whereas after this transaction, the same type of injury is not reversed, it’s rather patched up with scarring. That’s what happens in the adult as well. We believe that this is very indicative of something that’s going on across the whole body and that has a close relationship with the decline in regenerative capacity and repair capacity against various problems within aging.

Yuri: Is that the COX7A1 gene that was described in a paper in conjunction with Alex Zhavoronkov?

Aubrey de Grey: Yes, COX7A1 is one of the genes that change expression during the embryonic-fetal transition. We do not yet know, or at least we’re not sure, whether it plays a causal role or whether it’s just a marker. We are definitely looking quite a lot at other genes that also change, but COX7A1 is the one we focused on first and most at this point, basically just because it has the sharpest transition in the cell types that we studied so far.

Yuri: Would gene therapy be the vehicle to deliver to the body a way to modulate that gene?

Aubrey de Grey: It might be. Exactly what you do depends on which cell types you decide matter the most in expressing or not expressing a gene and in terms of what gene you want to express. Yes, we might do it with gene therapy. Of course, there are different types of gene therapy. For example, if you want to knock a gene down, you can do RNA interference, which is something that doesn’t involve integrating a new gene into the cell’s DNA. If you want to knock a gene up, you can sometimes also do it by RNA interference, because you can sometimes find the genes that antagonize the gene you want to knock up. If you knock down the gene that antagonizes the gene you want to knock up, then it happens indirectly. There are lots of tricks that are specific to the details of the genetic network, but in general, we would want to manipulate the level of expression and effectiveness of certain genes that change during the embryonic-fetal transition.

Yuri: Can I ask you about a different potential gene therapy, for example, partial reprogramming using Yamanaka factors? Do you think it has any potential as a systemic anti-aging therapy?

Aubrey de Grey: This is the idea that’s actually very similar to what I just described when I talked about the idea of restoration of stemness that we are pursuing at AgeX. Mostly, we don’t know which way is going to work better. We believe that we have a priority in terms of intellectual property, which, of course, is important for investors, but that’s not my problem; I’m focusing on the science.

Obviously, we don’t know which way is going to work best. There are lots of possibilities. The guys who pioneered the idea of partial reprogramming in vivo – there’s a group in Spain led by Manuel Serrano, who is someone I know very well; he’s spoken at one or two of our conferences in Cambridge. He’s a great guy doing a number of other really useful things; he’s got a brilliant new innovation in terms of killing senescent cells as well, which is a completely different area of SENS, of course. More recently, someone in San Diego named Juan Carlos Izpisua Belmonte developed a similar technique that he was able to make work, and his technique involved the intermittent inducible expression of the Yamanaka factors. Essentially, what will determine which of these approaches is the best is not just how well it works but how much harm it does, because there is always a possibility with these things that you will cause cells to become more regenerative that you wished were less regenerative, such as cancer cells, and we need to find a way to control that. It’s possible that AgeX will be able to do this better by using different genes.

Yuri: Okay, great. The reason I knew about Arigos earlier is that I am a big proponent of cryonics. I wanted to ask about your views on cryonics and whether you would personally consider it for yourself?

Aubrey de Grey: Cryonics in general – my position is well known. I’ve been a member of Alcor and a member of its scientific advisory board for 16 years now. I am definitely a very strong supporter. I think that it’s an absolute tragedy that cryonics is still such a backwater publicly and that a large majority of people still believe that it has no chance of ever working. Complete nonsense! If people understood it better, there would be more research done to develop better cryopreservation technologies, and more people would have a chance at life.

The question is what can we do to make cryonics work really well? I certainly don’t have a strong philosophical position with regard to what kinds of revival constitute actual revival and what kinds constitute creating a totally new person from information that you got from the old person. I am not a philosopher, so don’t ask me about that. My personal inclination is that if I have to be cryopreserved at all, and I hope not to be just like any cryonicist, then I prefer to be woken up by being warmed up rather than by being rebuilt from some kind of information restored from slicing and scanning my original brain. Therefore, I am really interested in improving the cryopreservation process: in other words, reducing the amount of damage that is inflicted by the process of cryopreservation and therefore would need to be repaired for successful reanimation; of course, this is along with the damage that the body already had that led to it getting declared legally dead in the first place. Arigos, with its helium persufflation approach, is, in my mind, a massive breakthrough, a breakthrough even bigger than vitrification, which was made 20 or so years ago by Greg Fahy and his peers at 21st Century Medicine when they identified a rather elaborate cocktail of cryoprotectants called M22 that allows biological material of any size to be cryopreserved without any crystallization at all. It eliminated over 90% of the damage that cryopreservation would hitherto have done to biological tissues. After that, it had become the standard of care at Alcor, the Cryonics Institute, KrioRus, and elsewhere.

We need more because the fact is that we still got a lot of cracking that happens – large-scale fracturing – and we’ve also got the toxicity of cryoprotectants, which is mild but non-trivial. Persufflation appears to solve both of these problems pretty much 100% by pumping helium through the vasculature, thereby stopping cracks from propagating, and cooling so much faster that you can vastly lower the concentration of cryoprotectants and still get no crystallization.

Yuri: Did you work with Greg Fahy or Mike Darwin at all on this technology?

Aubrey de Grey: I don’t work with any of these people, but I certainly talk to them. I am not sure what Mike Darwin has done, but Greg, as far as I know, had no work with persufflation itself. Obviously, he pioneered vitrification, but persufflation is something that was first explored in the Soviet Union, I don’t know exactly where, decades ago. Rather like parabiosis, it’s an area that was explored in the Soviet Union and then fell into neglect, and then everyone forgot about it for a long time, and then people in California found out about it and started to do something. The big innovation that Arigos has introduced was using helium, which has a number of advantages for cryonics purposes, but we are definitely building on what was originally done in the Soviet Union.

Certainly, Greg Fahy has been involved in the conversation. He has been advising a lot, and my current understanding is that he is very optimistic about the promise of persufflation, which tells a lot about Greg. The fact is that if persufflation works as well as it’s probably going to work, it’s going to blow Greg’s last 20 years of work out of the water. It takes a lot of honor.

Yuri: Absolutely; Greg is an amazing scientist and human being. I think for him, just as for you, it’s all about defeating aging first, and everything else is secondary. In any case, do you have any other cryonics research planned as part of SENS or Arigos?

Aubrey de Grey: Not as part of SENS, but, of course, I talk to all these people all the time. Something that you might be aware of, which happened very recently, was that Alcor received a very large donation of 5 million dollars specifically for research from Brad Armstrong, one of the people who made plenty of money on cryptocurrencies.

Yuri: It’s great to see crypto millionaires donating money to longevity research.

Aubrey de Grey: Yes, 5 million dollars is a hell of a lot of money for research in cryonics compared to what’s been available up until now. I am actively helping Max More, CEO of Alcor, to decide how to spend it.

Yuri: That’s great to hear. Maybe we’ll get some research done on the restoration of brain activity after cryopreservation. I know that Greg Fahy has done some prior work on assessing LTP preservation, but it’s probably outside of the scope of our interview.

Switching topics, there’s a lot of talk about the biohacking community lately, and a lot of people call themselves biohackers these days. Some claim that taking supplements or working out qualifies as biohacking. Do you consider yourself a biohacker; do you take any supplements or nootropics like Ray Kurzweil or Dave Asprey or do anything else that could be considered as biohacking?

Aubrey de Grey: I don’t take any supplements; I don’t do anything special with my lifestyle. I am not saying that that’s my recommendation for other people. My situation is very strongly that I am prepared to listen to my body. I know that I am just a lucky guy. I am genetically built so that my aging is slow, and I am fortunate enough to have been tested for a total of five times now over the past 15 years; they’ve measured 150 different things in my blood and did all manner of physiological and cognitive tests. I always come out really well, way younger than I actually am, so I should be conservative: if it ain’t broke, don’t fix it.

I eat and drink what I like, and nothing happens. I will pay attention to the situation when it changes, but it’s not changing yet. There’s a couple of things that I do that are bad for my health, especially the fact that I travel so much that I am not getting enough sleep. I think I’ve been coping with that so far as well, and, of course, the reason I do this is to hasten the defeat of aging with all the work that I do. Maybe it’s a net win. The bottom line is that I’m lucky.

I don’t say that Ray Kurzweil is being dumb in doing what he’s doing. On the contrary, Ray is one of the unlucky people; he came down with Type 2 diabetes in his 30s, and his family has had a lot of cardiovascular problems. It probably makes sense for him to be taking all of these supplements in order to largely normalize his rate of aging. For somebody whose rate is normal or better, there’s no evidence that taking supplements could actually have any benefit.

Yuri: What about the cognitive enhancers that Dave Asprey is recommending? Have you ever found anything that works or that you have considered trying?

Aubrey de Grey: No, I let my brain do what it normally does. Even for jet lag or needing to go to sleep, I don’t need these things. I can get to sleep whenever I am tired, whatever time of day it is. I occasionally thought it might be good to have a stash of modafinil just to be able to get through times when I need to stay awake for a long time, but I managed to work my way around those periods, so I haven’t done that either.

Yuri: Maybe your brain is already overactive – I read that you do math problems for fun, and what was this preprint that you published that made a splash in the media?

Aubrey de Grey: I’ve always played with maths for fun. I am reasonably good with certain types of maths, especially those that don’t need too much background knowledge because I don’t even have a degree in maths like graph theory or combinatorics. Yes, earlier this year, I got lucky and made some progress on a very famous long-standing maths problem called the Hadwiger-Nelson problem, and that got a bit of attention. The thing that strikes me the most about all that is that a number of people said, “I always thought Aubrey de Grey was a bit of a lunatic and never paid any attention to what he said about aging, but now that he made progress in this maths problem, he’s obviously smart, so now I will pay attention to what he says about aging.” I think that’s the most fucked-up logic you can possibly imagine, but I’ll take it.

Yuri: From what I understand, despite your background in computer science and no formal training in biology, you actually also have a Ph.D. in biology for your work in mitochondrial respiration back in the 1990s. Is that correct?

Aubrey de Grey: Yes, that’s correct. I benefited from the fact that I’d done my undergraduate degree fifteen years earlier in Cambridge. Of course, that was in computer science, but there’s a system at Cambridge where if you do your undergrad degree there, then you don’t have to be a Ph.D. student to get a Ph.D. from Cambridge. You can just submit published work, it gets evaluated like a dissertation, and you do a thesis defense. Mitochondrial respiration was probably the first area in biology that I got interested in and that I was invited to write a book about, so I did. It included the material for the first six papers of mine, and that’s what I ultimately got my Ph.D. for.

Yuri: It seems that the mitochondrial theory of aging was all the rage back then but has lost a lot of its appeal over the past two decades.

Aubrey de Grey: Yeah, that’s a problem. The reasons why things move in and out of fashion in a biological field are often overly superficial. Nothing’s really changed. Twenty years ago, people were overly breathless about mitochondria and free radicals, and they were neglecting the importance of the shortcomings of those theories, which my first couple of papers helped to repair. I pointed out that you can’t just say “mitochondrial mutations matter because free radicals matter.” You’ve got to flesh it out, and I did flesh it out in a way that nobody else had bothered to do.

Conversely, what happened more recently is that people have swung the other way, saying “there’s various new evidence that free radicals don’t matter, therefore game over.” Again, they are being overly simplistic in the opposite direction. In fact, what this new evidence shows is that certain, particularly simplistic, versions of the free radical theory of aging are not true, but people like me who actually pay attention knew that all along. For me, nothing’s really changed.

Yuri: You make an excellent point that there seems to be some kind of fashion in the field of biology in general or aging research in particular. I wonder why; is it just human nature to jump on the bandwagon and reject all other ideas, or is it groupthink? What is it about science?

Aubrey de Grey: In science, I would say it’s even worse than groupthink. It’s not a question of people just being sheep because they can’t think for themselves. Scientists can think for themselves. The problem in science is that people are forced to follow fashion in order to get money, whether it’s in the form of a grant application, funding, getting promoted, or tenure, which is appalling, because the whole point of science is to go against the grain, to be in the minority of one as often as possible, and to find things out that people didn’t know before. However, the way that the scientific career structure these days actually works opposes that. It’s a tragedy.

Yuri: Indeed, the incentives for going against the grain seem to be misaligned. Is there any way to mitigate this?

Aubrey de Grey: The only solution is to throw a lot more money at science so that people can be career scientists in a way that they used to be 200 years ago when no scientists were without patrons, wealthy noblemen who kept them as pets. They were getting stuff done, and they didn’t have to worry about justifying how they were getting stuff done.

Yuri: Well, let’s hope some philanthropically inclined wealthy noblemen hear you and create more fellowships. Okay, final, semi-serious question: once humanity does reach negligible senescence, what would that do to relationships, family institutions, marriage, and children?

Aubrey de Grey: Nothing at all. The only things that would happen as a result of increased longevity are simply the continuation of societal changes that have already been occurring over the past century. What I see is that as people live longer and stay healthy longer, there’s a rapid increase in the number of divorces, the number of people who have multiple relationships over their lives, and it’s just going to be a continuation of that. It’s not interesting.

Yuri: And overpopulation is never going to be an issue, right?

Aubrey de Grey: This is the one that everybody is worried about, but it’s just so silly that people worry about it. I’ve been saying this since forever – and nobody contradicts my answer, they just ignore it – the answer is that the carrying capacity of the planet, the number of people it can sustain without a problematic amount of environmental impact, is going to go up much faster than the population can possibly go up even if we completely eliminated all death. It’s going to go up as a result of renewable energy, artificial meat, desalination, and all those things. It’s just so painfully obvious, and I’ve been saying this in so many interviews and so many talks, and people just ignore it. I think the only reason people are ignoring my answer is because they need to. They need to carry on believing that aging is a blessing in disguise and thus be able to put it out of their minds, get on with their miserably short lives, and not get emotionally invested in the rate of progress that we will make.

Yuri: Well, let’s hope we can shake them out of their learned helplessness in the face of death and aging.

Aubrey de Grey: Absolutely.

Yuri: Great, thank you so much for this interview! I really look forward to seeing you in Moscow soon and discussing some of these issues in person as well as hearing about your latest achievements in the fight against humanity’s biggest problem!

Aubrey de Grey: Indeed! Thanks so much, Yuri, it’s been great.

Yuri Deigin is a serial entrepreneur and an expert in drug development and venture investments in biotechnology and pharmaceuticals. Yuri brings almost a decade of drug discovery and development experience from his previous role in a biotech startup where he oversaw research and development of original medicines aimed at treating diseases like Alzheimer’s and rheumatoid arthritis. Yuri has a track record of not only raising over $20 million for his previous ventures but also initiating and overseeing 4 clinical trials and several pre-clinical studies, including studies in transgenic mice. He also has experience in pharmaceutical product launch, promotion, manufacturing, and supply-chain management. Since 2013 Yuri also serves as a vice-president of the non-profit Foundation “Science for Life Extension” whose goal is the popularization of the fight against age-related diseases. To further this cause, Yuri frequently blogs, speaks, writes op-ed pieces, and participates in various TV and radio shows. Yuri holds a B.Sc. from the University of Toronto and an M.B.A. from Columbia Business School. Yuri is the CEO of biotech company Youthereum Genetics.

The Longevity Film Competition – Announcement by SENS Research Foundation, The Healthy Life Extension Society, and International Longevity Alliance

The Longevity Film Competition – Announcement by SENS Research Foundation, The Healthy Life Extension Society, and International Longevity Alliance

SENS Research Foundation
The Healthy Life Extension Society 
International Longevity Alliance


Editor’s Note: The U.S. Transhumanist Party encourages its members to participate in the Longevity Film Competition, whose official website can be found here. The more original attempts exist to convey to the general public the feasibility and desirability of indefinite life extension, and to dispel common misconceptions about it, the sooner we will have the critical mass of public support needed to bring about this most vital goal. 

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, July 15, 2018


Contest Introduction: 

We are living in very interesting times, times of constant change. The scientific community is telling us that soon we could enjoy much healthier and longer lives thanks to technological advancements happening at an accelerated rate. The future can be bright and healthy, and we want more people to know about this amazing prospect and want them to get involved in this important mission – the mission of healthy longevity.

However, describing something potentially beautiful is not always easy. We think you can help by making a (very) short movie conveying that a longer and healthier life thanks to sustainable medical interventions, will be a very positive thing for citizens and society alike.

Help us spread the word in the right way, help us make sure people understand this is about health and that for the first time in history the possibility of tackling aging is not science fiction, but science fact.

Join us in this crusade by entering our competition presented by the SENS Research Foundation, The Healthy Life Extension Society and the International Longevity Alliance and not only potentially help saving lots of lives, but also win the first prize of $10,000!

We look forward to your ideas on how to better communicate this important message to the world.

– The Longevity Film Competition team

Contest Guidelines: 

Even though putting aging under medical control is probably desirable to most humans, this concept is not always clear to everybody.

One of our goals is to use this competition as a vehicle to clarify and demystify some of the misconceptions we hear very often.

You can choose just one or all of them and explain them in any way you choose, using your own language and ideas.

Misconception #1

“Aging and disease are two separate things.”

CLARIFICATION:

— Aging causes disease, and they should be treated as one. —

As we age, we lose our health. We cannot age and become elderly without eventually getting ill as a result of it. If we live long enough, we will all get sick of one or several of the diseases of aging and eventually succumb to them. When we talk about eliminating aging, we talk about putting this process under medical control so that we don’t have to get sick as we age.

Misconception #2

“If I live to a 150, I will be living for a long time in an old, sick body.”

CLARIFICATION:

— If these new therapies help us live to a 150, it will only be because they will keep us strong and healthy. —

When we talk about extending our lifespan, we are talking about extending our health. The extension of our life will not happen unless we fix the health problems that come with aging. Once we do this, more longevity will happen as a “side benefit” of being healthier. As we said before, we get sick with aging, and that’s why most of humans die of old age.

So, if we will still be alive at 150, this will mean we will have a better control of the aging process through medical interventions – hence we should not be living in an old sick body.

Misconception #3

“Aging is natural, and we shouldn’t tamper with the natural.”

CLARIFICATION:

— Combating aging is a great challenge for Humanity, and we have a long history of getting great benefit from tampering with many natural things. —

It is proven that there are endless ‘unnatural’ things created by humans of enormous value and positive outcomes, and we can imagine only a minuscule number of people who would choose to live without them — especially when it has to do with suffering, disease and death.

A few examples of unnatural things we use all the time without questioning much are: pacemakers, antibiotics (to kill natural bacteria), painkillers, cochlear implants, dialysis, plastic surgery, airplanes (it is not natural for us to fly), hair coloring, prosthetic limbs, contact lenses, birth-control methods, and the list goes on forever.

On the other hand, here are some natural things that are definitely bad for us: earthquakes, hurricanes, mudslides, tornadoes, infectious microorganisms, poisonous plants, predators, venomous creatures, fire, gravity (when we fall), tsunamis, radiation, meteor impacts, etc.

It is time to reason and understand that “natural” doesn’t necessarily mean “good”.

Misconception #4

“These therapies will only be for the rich.”

CLARIFICATION:

— Healthy longevity therapies are being developed for everybody to access. —

Rejuvenation therapies could be as little reserved for rich people as mobile phones, cars, electricity, or vaccination may have been in the beginning. Like for most technological progress, the research may be complicated and expensive, but once the technology becomes available, it will become available for everybody. One good example is that the first Human Genome took $2.7 billion dollars and almost 15 years to complete. In 2001 the price of sequencing a genome was 100 Million dollars; today is under 1000 dollars, and it will keep going down without a doubt. Humanity has never stopped advancing just because it was harder and less cost-effective in the beginning; if we had thought like that, we would probably not have most of the technology that is available for everybody today. That’s one more reason why it’s so important not to delay the development of these cures.

Official Rules

  1. Concept of film: The submitted piece should show that medical progress for a healthier and longer life is generally a good thing for citizens and society alike. You will achieve this by using the list of common misconceptions provided in the Guidelines section above. You must choose at least one and may also choose all of them.
  2. Length: The length of the film should be a minimum of 1 minute and a maximum of 20 minutes.
  3. Visual art style: All kinds of visuals are allowed:
    Films, computer animations, whiteboard drawings, live action, infographics, stop and motion, cartoons, typography, screencast, etc.
  4. Genre: All genres are allowed. Science, fiction or science-fiction, a story, sad or funny, a docufiction, a documentary, etc.
  5. Copyright: All material used in the video should be original, or you should own the copyright for it. You may not use copyrighted material for which you don’t have the rights. If you fail to follow this rule, your film will be automatically disqualified.
  6. Submission: The submission deadline is 23:59 GMT September 15, 2018. The final work should be uploaded to the Internet, and a link to watch it should be provided to us via email at contact@longevityfilmcompetition.com, together with your last name, first name, and the proposed title of the work. The winners will be announced October 1st (International Longevity Day).
  7. Language: The official language is English. Videos can also be submitted in French, Spanish, Italian, German, Russian and Dutch but would need to have English subtitles.
  8. Work Originality and Permissions: a) Films must be the original work of the applicants, and they must be unpublished before July 1st, 2018. b) If a film is based upon another person’s life or upon a book or other underlying work, applicant(s) must secure any necessary rights to make such adaptations. c) By entering the competition, you represent that you have secured all necessary rights. d) Applicants are solely responsible for obtaining all necessary rights and permissions for third-party materials included in their films, including but not limited to music, trademarks, logos, copyrights, and other intellectual property rights. e) Longevity Film Competition (LFC) expressly disclaims all liability or responsibility for any violations of the foregoing. f) If your submission is selected for a prize, you agree that SENS Research Foundation (SRF), The Healthy Life Extension Society (Heales), and the International Longevity Alliance (ILA) use your movie without restriction to promote the mission of curing the diseases of aging. SRF, Heales and the ILA can show your work on the internet or by all other means. g) SRF, Heales and the ILA are non-profit organizations and may use the films to drive donations from the public, which will be used to advance the mission of healthy longevity. Any funds raised though the films will support scientific research, outreach, and/or education programs.
  9. Selected Films and Winners: a) LFC has no obligation (other than as stated in these rules or on our website) to disclose any of the following information: i) identities of screeners or judges; ii) notes, feedback, or information relating to the submitted project; and/or iii) details regarding the submission review or selection process. b) LFC explicitly disclaims any liability or responsibility for any comments, notes, or opinions expressed about a submission, whether by LFC or by its volunteers.  c) Winners will be announced on October 1st, 2018. The judges’ decision is final. Winners receiving cash prizes are solely responsible for payment of all applicable local, state, and federal taxes.
  10. Legal action: In the event of litigation the competent courts will be those of the Brussels jurisdiction in Belgium.
  11. Additional information: For all issues not mentioned above, the members of the jury will decide. They must decide in equity and with the same rules for all competitors.

COMPETITION LEGAL TERMS

BY SUBMITTING THE MATERIAL PARTICIPANTS  AGREE:

To having read all of the rules, understood, and have complied with these rules.

To warrant that their work is original and that there are no disputes regarding the ownership of their submission.

To warrant that the submitted material does not defame or invade the rights of any person living or dead.

That failure to adhere to the competition rules and regulations will result in disqualification.

That no revisions of materials will be accepted once entry has been submitted.

That to the best of their knowledge, all the statements herein are true and correct.

TO INDEMNIFY, HOLD HARMLESS, AND DEFEND THE COMPETITION, ITS EMPLOYEES, VOLUNTEERS, DIRECTORS, JURORS, REPRESENTATIVES, AND AFFILIATES FROM ALL LIABILITY, CLAIMS, AND DAMAGES IN CONNECTION WITH THE SUBMISSION AND FROM ANY FEES AND EXPENSES, INCLUDING BUT NOT LIMITED TO REASONABLE ATTORNEYS’ FEES, THAT ANY OF THEM MAY INCUR IN CONNECTION THEREWITH.
The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

Ariel VA Feinerman
Gary Hudson


Gary Hudson

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage cause pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previous undamaged — young — state of an organism, we can really rejuvenate it! Sounds very promising, and so it is. And for some types of damage (for example, for senescent cells) it is already proved to work!

Today in our virtual studio somewhere between cold rainy Saint-Petersburg and warm rainy Seattle, we meet Gary Hudson!

He has been involved in private space flight development for over 40 years. Hudson is best known as the founder of Rotary Rocket Company, which in spending ~$30 Million attempted to build a unique single stage to orbit launch vehicle known as the Roton. He helped found Transformational Space T/Space in 2004 and AirLaunch LLC which was awarded the DARPA/USAF FALCON project in 2003.

Previous projects included designs of the Phoenix SSTO, the Percheron, and other rockets, founder of Pacific American Launch Systems, and various consulting projects. Currently, he is the President and CEO of the Space Studies Institute.

Now Hudson brings his excellent engineering skills into rejuvenation biotechnology! He is a founding partner of Oisin Biotechnologies, who are developing a liposomally delivered DNA therapy for the removal of senescent cells from the body. Hudson provided an initial seed donation to help fund the creation of the Methuselah Foundation and SENS Research Foundation.

Interview

Feinerman: Hello, Mr Gary Hudson!

Hudson: Thanks for inviting us to this interview!

Feinerman: You have recently visited an amazing Undoing Aging 2018 conference, which took place in Berlin, 15–17 March, where your colleague, Matthew Scholz, was a speaker. What is your impression?

Hudson: It was a great conference with several important presentations. It put me in mind of the early SENS conferences in Cambridge, UK, which I helped to sponsor. I understand it will now become an annual event. Our CSO Dr. John Lewis also gave an important summary of our work to date.

Feinerman: Will Oisin’s presentations from conference be available for general public?

Hudson: I believe that the SENS Foundation will be posting them but I don’t have details about the timing.

FeinermanYour last interview was in July 2017, more than half a year ago. What has been accomplished?

Hudson: We have conducted many pre-clinical mouse experiments on both cancer and senescent cell removal. All have been successful and produce very remarkable results. We’ve also conducted a pilot toxicity and safety trial on non-human primates. The results of that trial were also successful and encourage us to proceed to human safety trials as soon as regulatory authorities approve them. We have also spun-out a cancer-focused company, Oisin Oncology, and raised a seed round for that venture.

Feinerman: Great to hear! However, when can we see some papers? People usually trust papers more than mere interviews or press releases. Of course, papers need many efforts not related to research but they will allow you attract more attention from general public, researchers, and investors.

Hudson: Papers are being prepared now for submission to major journals, but that process takes time, especially the peer review. For the moment, most of our data is only available to investors and partners in pharma and the biotech industry.

Feinerman: You planned human clinical trials, have you carried them out?

Hudson: It takes quite some time to organize a human trial and to get it approved. Before one can be conducted, we have to set up so-called “GMP (Good Manufacturing Practice) manufacture of our therapeutic, and then we have to conduct “GLP (Good Laboratory Practice) Tox” studies in two different species. Once that is all completed later this year, then we can begin a human safety trial, or a “Phase 1” trial. All this takes time, but we hope that first safety trials in oncology indications might begin this year, or in early 2019.

Feinerman: Does that mean we have a race between Unity Biotechnology and Oisin and you have all chances to win the race?

Hudson: I don’t see it as a race or a competition. I believe that future anti-aging treatment will require multiple complimentary approaches.

Feinerman: When we can expect your therapy available in the clinic?

Hudson: It’s very difficult to predict. I believe that our cancer treatment will make it to the clinic first, and that could happen in less than five years. Since the FDA doesn’t regard ageing as an indication, it may take longer for our SENSOlytic™ treatment to reach the public, since the regulatory environment will need to change.

Feinerman: As Michael Rae has said, we need not to wait when ageing will be recognised as a disease. You can mark your senolytics as a therapy for specific ageing pathology like fibrosis or chronic inflammation in the same way as Unity does.

Hudson: This is certainly true and is part of our strategy, but many of those endpoints are more difficult to ascertain than oncology endpoints. Additionally, going after oncology approvals can be faster and easier to get to clinic. But we will push forward on several fronts as funding permits.

Feinerman: In your previous interview you have said that you make some tweaks to both the promoter side and the effector side of the constructs that will provide even more interesting and useful extensions to the basic capability, but you can’t discuss those for IP reasons. Can you now say about them?

Hudson: I still can’t say too much about them, but we have conducted animal trials on some of these “tweaks” and they work quite well. The downside to the matter is that every “tweak” requires new trials, and our goal is to get something to the clinic as soon as possible, so many of the improvements will have to wait. Progress is limited based on available funds and personnel resources, of course, but we will move as quickly as we can.

Feinerman: Do you use any CAD software to design your constructs? Are you going to make them public so independent engineers will be able to help you identify new useful pairs of promoters and effectors? Your technology is so powerful that Open Source approach would be very helpful!

Hudson: No, the design of the current constructs are very straightforward and simple. As our patents are issued, their design will become public. If people wish to design their own constructs for particular applications they may contact us for collaboration, though we do have several collaborations active at the moment so we may already be working on similar ideas.

Feinerman: What do you think on targeting your machinery on cells with abnormal telomerase activity to kill cancer? Can you use several conditions — like in programming — several promoters to be more specific?

Hudson: If we targeted telomerase we’d also kill stem cells, just like the side effects of much of conventional chemotherapy. That’s probably not a good idea. But multiple promoters, or synthetic promoters, might be used to achieve the aims of killing only cancer cells. Our initial therapeutic will likely just employ p53 promoter targeting, since we have good data that works.

Feinerman: Yeah, the same issue as when we remove or break telomerase gene: there would be nice to do this only in compromised tissue, but as researchers say it is very difficult to make the removal selective. However, it is not a problem with ALT genes, which cause 15–20% of cancers. Are you going to collaborate with the OncoSENS lab? Also killing cells actively expressing telomerase will be very useful in WILT implementation.

Hudson: We’ve had conversations with the SENS Foundation about OncoSENS and cooperated in a preliminary fashion, but I don’t believe it is currently a research priority for them. We already have enough projects to keep us busy for some time, too!

Feinerman: Now you use only suicide gene as an effector, do you plan to use other genes? For example to enhance the cells, give them ability to produce new enzymes, or temporarily shut down telomerase to help anti-cancer therapy to be more effective.

Hudson: We believe we can express any gene under the control of any promoter we wish to use, so the possibilities are almost endless.

Feinerman: Now we know that epigenetic changes (shift) play a huge role in ageing. Even though there is no consensus among researchers whether they are a cause or a consequence of ageing, experiments show that temporal expression of OSKM transcription factors may have some health benefits by restoring “young” epigenetic profiles. You can remember the Belmonte work, for example. However, the problem in their work is that they used transgenic mice and express OSKM in every their cell. If you temporarily express OSKM in an “old” cell, that is OK, you can “rejuvenate” such a cell. While if you express OSKM in a stem cell which is already biologically “young”, you can force the cell into iPSC, which is a way to cancer. Using your machinery we can target only cells which have “old” expression profiles, and involving normal mice! Such a work will be much “cleaner” and safer than Belmonte’s work.

Hudson: With respect to your comments about reprogramming, Oisin is currently working with a university group on exactly this approach, but I can’t say more at this time. We also believe that first you have to clear existing senescent cells, then you can reprogram successfully.

Feinerman: How many resources, finances, and personnel do you need to move as quickly as possible? Do you have open positions? Maybe, some of our readers have enough finances or experience.

Hudson: We could effectively spend tens of millions or dollar or more, very easily, but it isn’t realistic to assume we could raise that amount — and if we did, we’d lose control of Oisin’s ageing focus, since investors would most likely want us to aim at quick returns. We are always interested in talking with “mission minded” investors, however. As for hiring, we have to do that slowly and judiciously, since labour is one of the biggest costs to a start-up company, and over-hiring can sink a project quickly. We already have more potential hires than we can bring on-board.

Feinerman: Now cryptocurrencies and blockchain technologies allow completely new and efficient ways for investments. We can see this as various no-name companies easily rise tens of millions dollars via ICOs for clearly doubtful projects. Would you like to make an ICO? Oisin shows real progress and can easily rise big sums! People say that they will be glad to buy your tokens if you issue them. You have said that you prefer to work with “mission minded” investors. There are thousands people out there who can invest from $1,000 to $100,000 in cryptocurrencies and who believe that radical extension of healthy life is possible!

If you are worried about legal issues, you can use various cryptocurrency investment funds who act like proxies between holders of cryptocurrencies and companies.

Hudson: We have investigated several of these financing options, but we are not expert in this area, so we have been reluctant to move too quickly. But we continue to have conversations with relevant parties. There is a lot of regulatory uncertainty surrounding ICOs, however, so we must move cautiously.

Feinerman: Now we know enough about ageing to defeat our main enemy. Do you agree that first comprehensive rejuvenation panel is not a scientific problem and even not an engineering problem, but a problem of engineering management?

Hudson: I wouldn’t say that there is no science left to do, but as an engineer myself I naturally agree that proper engineering management and program management skills must be brought to bear on the problem of ageing.

Feinerman: One person has said, we get what we ask for. Can we now aim high and publicly claim that our main goal is not additional five years of life but LEV — Longevity Escape Velocity and finally unlimited healthy life?

Hudson: This is a difficult “public relations” problem. Most investors, the scientific community, and the public are not yet ready to embrace the notion of longevity escape velocity. Thus at Oisin we do pitch health span as a primary goal. But personally I don’t believe that you can obtain health span improvements without making significant progress towards LEV. So in the end, I think we get LEV by targeting health span, and we reduce the controversy by doing so.

Feinerman: Some people ask me how to buy your stocks or invest in Oisin. What can you say?

Hudson: We do have a number of private investors (angel investors) who are “mission minded” or “mission focused” and we welcome discussions with qualified investors and firms who share our vision for dealing with ageing and cancer. Accredited investor candidates may contact us at info@oisinbio.com

Feinerman: David Gobel claims that “By advancing tissue engineering and regenerative medicine, we want to create a world where 90-year olds can be as healthy as 50-year olds by 2030.” And I secretly hope that 40 will become new 30 or even 20 by 2030! Can we achieve that — in principle?

Hudson: I certainly hope so! In 2030 I’ll be 80, so I’m looking forward to feeling like I’m 40…

Feinerman: Thank you very much for your amazing answers! That was a real pleasure to talk with such a great man like you. I hope we all will succeed in our goal and will have hundreds, thousands, and — who knows? — maybe even millions years of healthy life!

Hudson: It is kind of you to say so, but I only consider myself fortunate to be working with the really great men and women in the anti-aging community who are doing the real work. I’m only trying to facilitate their efforts and get treatments to the clinic as fast as possible. I don’t know what will be possible in the long term, but anything will be better than letting nature run its course, producing sickness and declining functional health.

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality.

Message from Ariel VA Feinerman: If you like my work, any help will be appreciated!

PayPal: arielfeinerman@gmail.com

Bitcoin: 1Gz5ebAyPmM9vNAAgpmeX7G3rtKMyWEjb1

Ether: 0x4752d8a8615Cdf48E220f9dbb48654C7791716ee

Bitcoin Cash: qzh427szlnfyk2k6v547gkpjvafnmzgk35hzagzs82

The Best of the SENS AMA – Article by Steve Hill and Aubrey de Grey

The Best of the SENS AMA – Article by Steve Hill and Aubrey de Grey

Steve Hill

Dr. Aubrey de Grey


Editor’s Note: In this article, Steve Hill highlights the Ask Me Anything on Reddit held on December 7th by Dr. Aubrey de Grey.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, December 13, 2017

 

Dr. Aubrey de Grey from the SENS Research Foundation (SRF) did an Ask Me Anything on Reddit on December 7th, and there were many great questions and answers; we thought it would be a great time to summarize some of the best ones and offer a little commentary.

What do you think were the biggest wins of the last couple of years in SENS-relevant advocacy, research, and development? What has moved the needle?

There have been lots. On the research, I would highlight our paper in Science two years ago, which shows how to synthesize glucosepane, and our paper in Nucleic Acids Research one year ago, which shows simultaneous allotopic expression of two of the 13 mitochondrial genes. Both of those projects have been greatly accelerated in the meantime as a result of those key enabling breakthroughs; watch this space.

On advocacy, I think the main win has been the arrival of private capital; I would especially highlight Jim Mellon and his Juvenescence initiative because he is not only a successful, energetic and visionary investor, he is also a highly vocal giver of investment advice.

We are pleased to have been involved with the second project mentioned here, as we hosted the MitoSENS project at Lifespan.io, where it raised 153% of its initial fundraising goal. Less than a year later, after raising this money, it went on to publish the groundbreaking study showing that backup copies of mitochondrial genes could indeed be created in the nucleus. Dr. de Grey originally proposed the idea over a decade ago amid much scepticism; it is really good to see that years later he has been vindicated. This is the power of crowdfunding and how we as a community can make big changes in science by working together.

How do you feel about the impact of groups like LEAF advocating and reporting on rejuvenation biotech? Has the advocacy and reporting of these groups made your life any easier?

Massively! A huge thing that I say all the time is that advocacy absolutely relies upon the diversity of its messengers. Different people listen to different forms of words, different styles of messaging, etc. The more, the better.

It’s good to know that our work is appreciated and helping. Working together as a community is essential for progress, so it was nice to see this question and response from someone we respect a great deal.

We have said many times before effective advocacy efforts are just as important as the research itself. Professional advocacy has the potential to increase public support and funding, paving the way for the arrival of rejuvenation biotechnology. In the past decade or so, advocacy has mostly been left to volunteers and people such as Dr. de Grey.

Popular causes attract celebrities, public support, funding and investment; if we want a revolution in medicine and how we treat aging, then we must popularize the movement. There has been a serious shortage of full-time and organized advocacy; therefore, we decided to create LEAF to support groups like the SRF, advocate to popularize the cause, and help to raise much-needed funds for research efforts. We are only able to do this thanks to the support of the community, and we are extremely grateful to our Lifespan Heroes for helping us to do the work we do.

Aside from funding, what do you consider to be a burden or delay for your type of research?

Nothing. Seriously, nothing at all. We have the plan, and we have the people. It’s all about enabling those people by giving them the resources to get on with the job.

Indeed, funding for research is one of the four major bottlenecks slowing down the development of therapies that address the aging processes. The more funding the field gets, the more projects can be launched, the sooner breakthroughs can potentially happen, and the greater the benefits will likely be for all of us.

Is there anything new you are able to say about the breaking of cross-links in the extracellular matrix?

Absolutely. Short story, we now have a bunch of glucosepane-breaking enzymes, and we are within a few months of spinning the work out into a startup.

A suspected cause of degenerative aging is the accumulation of sugary metabolic wastes known as advanced glycation end-products (AGEs). These are wastes that are, in some cases, hard for our metabolism to break down fast enough or even at all. Some types, such as glucosepane, can form cross-links, gumming together important proteins such as those making up the supporting extracellular matrix scaffold.

The properties of elastic tissues (skin and the blood vessel walls) derive from the particular structure of the extracellular matrix, and cross-links degrade that structure, preventing it from functioning correctly. AGEs’ presence contributes to blood vessel stiffening with age, and it is implicated in hypertension and diabetes.

That SRF now has candidate enzymes is very significant because it means that there are now potential ways to remove these crosslinks from our tissues. There are many types of crosslinks, and we already know of compounds and drugs that can break other kind of crosslinks; the major problem is glucosepane, as it lasts a very long time, and, so far, nothing is known to remove it. Given that other types of crosslinks can be removed, Dr. de Grey rightly thought that there must be ways to remove (cleave) glucosepane from tissues; now, it seems that we are a step closer to that potentially becoming a reality.

If the SRF is successful in finding ways to break glucosepane crosslinks, this has huge implications for diabetes, hypertension and aging. It is great to hear that the organization is now reaching the point at which it is almost time to develop this as a therapy by creating a startup company.

It seems likely that artificial intelligence will be a necessary tool in order to reach longevity escape velocity. I was wondering how much of a role does artificial intelligence play in your research? Is this something you devote many resources to?

We don’t, but that is because other major players in this field (and good friends of mine), such as Alex Zhavoronkov and Kristen Fortney, are doing it so well already (with Insilico Med and BioAge, respectively). Check out the BioData West conference that will occur in SF a couple of days before our Undoing Aging conference in Berlin; I will be chairing a session on this.

We believe that the application of AI and, in particular, machine learning will prove to be a very valuable tool for research in the coming years. Such systems are ideally suited for high-throughput, laborious tasks that also require high attention to detail and would take humans a long time to do. Drug discovery, image analysis and many more tasks in the lab could potentially be automated, saving time and freeing up researchers to work on other critical tasks.

We are proud to have hosted the MouseAge project this year, which is an AI-based visual aging biomarker application that helps researchers determine the age of mice without the use of harmful tests. In a few months, researchers will be able to use the MouseAge application in the lab to help speed research progress up. This is just one example of how AI can be used in aging research and how the community helped to make it happen.

Given current funding, how far away from robust mouse rejuvenation do you think you are?

My estimate is 5-7 years, but that’s not quite “given current funding”. My overoptimism in saying “10 years” 13 years ago consisted entirely of overoptimism about funding – the science itself has not thrown up any nasty surprises whatsoever – but, nonetheless, I am quite optimistic as of now about funding, simply because the progress we have made has led to a whole new world of startups (including spinoffs from the SENS Research Foundation) and investors, so it’s not only philanthropy anymore. Plus, the increase in overall credibility of the approach is also helping to nurture the philanthropic side. We are still struggling, that’s for sure, but I’m feeling a lot surer that the funding drought’s days are numbered than I felt even two or three years ago.

Robust mouse rejuvenation (RMR) has long been a goal for the SENS Research Foundation, going back to when the SENS approach was initially proposed. RMR was originally outlined as being able to demonstrate and replicate SENS to double the remaining life expectancy of an already aged mouse. This would not mean the first RMR would be a total implementation of all the SENS approaches or that rejuvenation would need to be absolute; it would be a first pass to demonstrate the viability of multiple SENS approaches combined to produce robust results.

Being able to achieve a first-pass RMR could do much to convince academia that the repair approach to aging is plausible and attract more funding and interest in the approach. While RMR working in mice may not sound that exciting, it has huge implications for the field and potentially the rate of funding and progress.

How confident are you still in your previous prediction that humans will be able to control aging by 2029?

I think we’ve slipped a few years, entirely because of lack of funding. The tipping point will be when results in mice convince a critical mass of my curmudgeonly, reputation-protecting expert colleagues that rejuvenation will eventually work, such that they start to feel able to say so publicly. I think that’s on the order of five years away.

We think that the tipping point could well be if senolytics have the same result in humans as they have in mice. Enhanced tissue repair and regeneration in older people would be a very strong case for the repair approach to aging and almost certain to convince the academics sitting on the fence.

Certainly, if AGE breakers could be demonstrated to work in humans, this would also go a long way towards not only convincing academia but also grabbing public interest. Removing AGEs from the skin may potentially reverse wrinkles, for example, and restore skin elasticity, offering a very visual demonstration of repair being plausible.

There is almost certainly going to be a tipping point at which the bulk of academic and public support swings in favour of a repair approach to aging; the only question is when? Well, the sooner the basic science can be done and moved to translational research, the sooner we can all potentially benefit from these technologies. This makes supporting both the research and advocacy of rejuvenation biotechnology very important for progress.

 

About Dr. Aubrey de Grey

Dr. Aubrey de Grey is a biomedical gerontologist based in Cambridge, UK and Mountain View, California, USA, and is the Chief Science Officer of SENS Research Foundation, a California-based 501(c)(3) charity dedicated to combating the aging process. He is also Editor-in-Chief of Rejuvenation Research, the world’s highest-impact peer-reviewed journal focused on intervention in aging. He received his BA and Ph.D. from the University of Cambridge in 1985 and 2000 respectively. His original field was computer science, and he did research in the private sector for six years in the area of software verification before switching to biogerontology in the mid-1990s. His research interests encompass the characterisation of all the accumulating and eventually pathogenic molecular and cellular side-effects of metabolism (“damage”) that constitute mammalian aging and the design of interventions to repair and/or obviate that damage. He has developed a possibly comprehensive plan for such repair, termed Strategies for Engineered Negligible Senescence (SENS), which breaks aging down into seven major classes of damage and identifies detailed approaches to addressing each one. A key aspect of SENS is that it can potentially extend healthy lifespan without limit, even though these repair processes will probably never be perfect, as the repair only needs to approach perfection rapidly enough to keep the overall level of damage below pathogenic levels. Dr. de Grey has termed this required rate of improvement of repair therapies “longevity escape velocity”. Dr. de Grey is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organisations.

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews, and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity Reporter, Psychology Today, and Singularity Weblog. He is a co-author of the book Aging Prevention for All – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

SENS: Progress in the Fight Against Age-Related Diseases – Article by Nicola Bagalà and Steve Hill

SENS: Progress in the Fight Against Age-Related Diseases – Article by Nicola Bagalà and Steve Hill

Nicola Bagalà

Steve Hill


Editor’s Note: In this article, Mr. Nicola Bagalà and Steve Hill discuss the progress that the SENS Research Foundation has made in tackling the aging processes. Below is a brief summary of some of the highlights of their research efforts.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, December 8, 2017

 

 

Today, there are many drugs and therapies that we take for granted. However, we should not forget that what is common and easily accessible today didn’t just magically appear out of thin air; rather, at some point, it used to be an unclear subject of study on which “more research was needed”, and even earlier, it was just a conjecture in some researcher’s head.

Hopefully, one day not too far into the future, rejuvenation biotechnologies will be as normal and widespread as aspirin is today, but right now, we’re in the R&D phase, so we should be patient and remind ourselves that the fact that we can’t rejuvenate people today doesn’t mean that nothing is being done or has been achieved to that end. On the contrary, we are witnessing exciting progress in basic research—the fundamental building blocks without which rejuvenation, or any new technology at all, would stay a conjecture.

In particular, SENS Research Foundation (SRF), a pioneering organization of the field, is sometimes unjustly accused by skeptics for failing to produce results. But produce results it has, and many at that. Skeptics either decide to ignore them or do not have access to reliable sources. For the benefit of the latter, we’ll discuss below what has been achieved by SRF over the past few years, in relation to the infamous “seven deadly things”, the seven categories of damage that aging causes as described in the SENS repair approach.

Mitochondrial mutations

In a nutshell, a mitochondrion is a cell component that is in charge of converting food nutrients into ATP (adenosine triphosphate), a chemical that powers cellular function. Your DNA is contained within the nucleus of each of your cells, but this isn’t the only DNA in your body; mitochondria have their own DNA (known as mtDNA), likely because, at the dawn of life, they were independent organisms that eventually entered a symbiotic relationship with eukaryotic cells, such as those found in our bodies.

Unfortunately, as mitochondria produce ATP, they also produce so-called free radicals as a byproduct—atoms with unpaired electrons that seek to “pair up” with other electrons, and to do so, they’ll gladly snatch them from other molecules nearby, damaging them. As free radicals are created by mitochondria, they’re very close to mtDNA, which is thus very susceptible to being damaged and undergoing mutations.

Mitochondria with damaged DNA may become unable to produce ATP or even produce large amounts of waste that cells cannot get rid of. To add insult to injury, mutant mitochondria have a tendency to outlive normal ones and take over the cells in which they reside, turning them into waste production facilities that increase oxidative stress—one of the driving factors of aging.

MitoSENS: How to solve this problem, and how far we’ve got

Cell nuclei are far less exposed to free-radical bombardment than mitochondria, which makes nuclear DNA less susceptible to mutations. For this reason, the cell nucleus would be a much better place for mitochondrial genes, and in fact, evolution has driven around 1000 of them there. Through a technique called allotopic expression, we could migrate the remaining genes to the nucleus and solve the problem of mitochondrial mutations.

Human-made allotopic expression was a mere theory until late 2016, when, thanks to the successful MitoSENS crowdfunding campaign on Lifespan.io, a proof of concept was finally completed. Dr. Matthew O’Connor and his team managed to achieve stable allotopic expression of two mitochondrial genes in cell culture, as reported in the open-access paper[1] they published in the journal Nucleic Acids Research. As Aubrey de Grey himself explains in this video, of the 13 genes SRF is focusing on, it’s now managed to migrate almost four. This had never been done before and is a huge step towards addressing this aspect of aging in humans. In the past few months, the MitoSENS team has presented its results around the world and worked on some problems encountered in the project.

A list of SRF-funded papers on the topic of mitochondrial mutations can be found here. A more detailed description of its intramural MitoSENS research can be found here.

Lysosomal dysfunction

Lysosomes are digestive organelles within cells that dispose of intracellular garbage—harmful byproducts that would otherwise harm cells. Enzymes within lysosomes can dispose of most of the waste that normally accumulates within cells, but some types of waste, collectively known as lipofuscin, turn out to be impossible to break down. As a result, this waste accumulates within the lysosomes, eventually making it harder for them to degrade even other types of waste; in a worst-case scenario, overloaded lysosomes can burst open and spread their toxic contents around.

This eventuality is especially problematic for cells that replicate little or not at all, such as heart and nerve cells—they’ve got all the time in the world to become swamped in waste, which eventually leads to age-related pathologies, such as heart disease and age-related macular degeneration.

LysoSENS: How to solve this problem, and how far we’ve got

As normal lysosomal enzymes cannot break down lipofuscin, a possible therapy could equip lysosomes with better enzymes that can do the job. The approach suggested by SRF originates with ERT—enzyme replacement therapy—for lysosomal storage diseases. This involves identifying enzymes capable of breaking down different types of intracellular junk, identifying genes that encode for these enzymes, and finally delivering the enzymes in different ways, depending on the tissues and cell types involved.

SRF funded a preliminary research project on lipofuscin clearance therapeutics at Rice University[2] and another project relating to atherosclerosis and the clearance of 7-ketocholesterol[3] (a lipofuscin subtype), which eventually spun into Human Rejuvenation Biotechnologies, an early-stage private startup funded by Jason Hope.

A LysoSENS-based approach is currently being pursued by Dr. Kelsey Moody, who used to work at SRF. Dr. Moody has been working on an ERT treatment for age-related macular degeneration. The treatment consists in providing cells of the macula (a region of the eye’s retina) with an enzyme capable of breaking down a type of intracellular waste known as A2E. The treatment, called LYSOCLEAR, is being worked on by Moody’s company Ichor Therapeutics, which earlier this year has announced a series A offering to start Phase I clinical trials of its product.

If LYSOCLEAR proves successful, it could pave the way for future LysoSENS-based therapies to treat lysosomal dysfunction in different tissues.

A list of SRF-funded papers on the topic can be found here.

Cellular senescence

As cells divide, their telomeres—the end-parts of chromosomes protecting them from damage—shorten. Once a critical length has been reached, cells stop dividing altogether and enter a state known as senescence. Senescent cells are known to secrete a cocktail of chemicals called SASP (Senescence Associated Secretory Phenotype), which promotes inflammation and is associated with several age-related conditions.

However, senescent cells are a bit of a double-edged sword; as explained by Professor Judy Campisi during RB2016, as long as they’re not too numerous, senescent cells carry out an anti-cancer function and may promote wound healing; however, too many of them have the opposite effect, and on top of that, they induce neighboring cells to undergo senescence themselves, starting a dangerous spiral.

Normally, senescent cells destroy themselves via programmed cell death, known as apoptosis, and are then disposed of by the immune system, but some of them manage to escape destruction, and as the immune system declines with age, this gets worse.

The result is that late in life, senescent cells have accumulated to unhealthy amounts and significantly contribute to the development of age-related diseases. Osteoarthritis, cardiovascular diseases, cancer, metabolic disorders such as diabetes, and obesity are all linked to the chronic age-related inflammation to which senescent cells contribute.

ApoptoSENS: How to solve this problem, and how far we’ve got

The proposed SENS solution is straightforward: if senescent cells become too numerous, then they need to be purged. Since they are useful in small amounts, the optimal solution would be periodically removing excess senescent cells without eradicating them entirely—and more importantly, leaving other cells unharmed.

This could potentially be achieved by either senolytic drugs or gene therapies that selectively target senescent cells and trigger programmed cell death. Indeed, a great deal of recent focus by researchers have been on finding ways to remove senescent cells using senolytic therapies.

Another approach that could complement senolytics is to address why the immune system stops clearing senescent cells effectively in the first place. This approach focuses on macrophages and other immune cells involved in clearing senescent cells, aiming to reduce inflammation so that these cells begin to function properly again. The irony is that as inflammation rises with age, the immune system that is supposed to clear senescent cells and keep inflammation levels down actually starts to create more inflammation and becomes part of the problem by not doing its job properly.

SRF has funded a number of studies on the subject of cellular senescence, and it’s recently begun working on a project in collaboration with the Buck Institute for Research on Aging, which is focusing on the immune system and its role in clearing senescent cells. Another extramural project, again with the Buck Institute, is focussed on SASP inhibition.

Senescent cell clearance has been all the rage for the past two years or so; Lifespan.io has hosted the MMTP project, which focused on testing senolytics in mice, and this was later followed by CellAge’s project to design synthetic biology-based senolytics.

There are other companies that have joined the race to add senescent cell clearance to the standard toolkit of doctors, such as Unity Biotechnology and Oisin Biotechnologies.

Unity’s approach uses a drug-based approach to senolytics and is scheduled to enter human clinical trials in 2018. A number of other research teams are also developing drug-based approaches to removing senescent cells, and the competition looks set to be fierce in this area in the coming years.

Oisin’s approach, which we discussed here, makes use of suicide genes and hopefully will be tested in clinical trials not too far into the future, thanks to venture funding presently being collected. If this system can be made to work, it will allow very selective targeting of senescent cells by destroying only those giving off a target gene or genes. Thus, if a unique gene expression profile for senescent cells is determined, it would mean only those cells were destroyed, with less risk of off-target effects.

Oisin owes its existence to the SENS Research Foundation and the Methuselah Foundation, which provided the necessary seed funding. Kizoo Technology Ventures has also invested in Oisin.

Extracellular crosslinks

The so-called extracellular matrix is a collection of proteins that act as scaffolding for the cells in our body. This scaffolding is rarely if ever replaced, and a really bad consequence of this is that its parts eventually end up being improperly linked to each other through a process called glycation—the reaction of (mainly) blood sugar with the proteins that make up the extracellular matrix itself.

The resulting cross-links impair the function and movement of the linked proteins, ultimately stiffening the extracellular matrix, which makes organs and blood vessels more rigid. Eventually, this leads to hypertension, high blood pressure, loss of skin elasticity, and organ damage, among other problems.

While there are different types of cross-links—known as AGEs, short for advanced glycation end-products—glucosepane is arguably the worst, being the most common and long-lasting of all, and the body is very ill-equipped to break it down.

GlycoSENS: How to solve this problem, and how far we’ve got

In order to eliminate unwanted cross-links, the SENS approach proposes to develop AGE-breaking molecules that may indeed sever the linkages and return tissues to their original flexibility. Of course, in order to do so, crosslink molecules need to be available for research to attempt to combat them with drugs, and especially in the case of glucosepane, this has been a problem for years.

Glucosepane is a very complex molecule, and very little of it can be extracted from human bodies, and not even in its pure form. This has been greatly hampering the progress of research against glucosepane, but thankfully, this problem is now solved thanks to a collaboration between the Spiegel Lab at Yale University and the SENS Research Foundation, which financially supported the study. It is now possible to fully synthesize glucosepane, allowing for researchers to create it on demand and at a cost-effective price.

The Spiegel Lab’s scientists are now developing anti-glucosepane monoclonal antibodies to cleave unwanted cross-links. The collaboration between the Spiegel Lab and SRF dates all the way back to 2011, but it was in 2015 that the Lab announced its success and published a related paper [4] in the journal Science.

Further information on glucosepane cross-link breakers can be found in this interview with Dr. David Spiegel from Yale University on Fight Aging!; a list of studies on the subject funded or otherwise supported by the SRF is available here.

SRF also worked with the Babraham Institute on a cross-link quantification project.

Let’s help SRF move forward

Readers who wish to donate to SRF to help the organization in its crusade against the ill health of old age can do so by contributing to its winter fundraiser or even becoming SRF patrons. Have a look at SRF’s donation page to find out more.

NB: Dr. Aubrey de Grey (Chief Science Officer and Co-founder of SENS Research Foundation) himself held an AMA (“ask me anything”) on Reddit on December 7, at 14:00 PST (22:00 UTC, 17:00 EST). The questions and Dr. de Grey’s responses can be found here.

Literature

[1] Boominathan, A., Vanhoozer, S., Basisty, N., Powers, K., Crampton, A. L., Wang, X., … & O’Connor, M. S. (2016). Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant. Nucleic acids research, 44(19), 9342-9357.

[2] Gaspar, J., Mathieu, J., & Alvarez, P. (2016). A rapid platform to generate lipofuscin and screen therapeutic drugs for efficacy in lipofuscin removal. Materials, Methods and Technologies, 10, 1-9.

[3] Mathieu, J. M., Wang, F., Segatori, L., & Alvarez, P. J. (2012). Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted Chromobacterium oxidase. Biotechnology and bioengineering, 109(9), 2409-2415.

[4] Draghici, C., Wang, T., & Spiegel, D. A. (2015). Concise total synthesis of glucosepane. Science, 350(6258), 294-298.

 

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews, and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity Reporter, Psychology Today, and Singularity Weblog. He is a co-author of the book Aging Prevention for All – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About Nicola Bagalà

Nicola Bagalà has been an enthusiastic supporter and advocate of rejuvenation science since 2011. Although his preferred approach to treating age related diseases is Aubrey de Grey’s suggested SENS platform, he is very interested in any other potential approach as well. In 2015, he launched the blog Rejuvenaction to advocate for rejuvenation and to answer common concerns that generally come with the prospect of vastly extended healthy lifespans. Originally a mathematician graduated from Helsinki University, his scientific interests range from cosmology to AI, from drawing and writing to music, and he always complains he doesn’t have enough time to dedicate to all of them which is one of the reasons he’s into life extension. He’s also a computer programmer and web developer. All the years spent learning about the science of rejuvenation have sparked his interest in biology, in which he’s planning to get a university degree.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Our Moral Obligation to Cure Aging – Aubrey de Grey Interviewed by Why? Radio

Our Moral Obligation to Cure Aging – Aubrey de Grey Interviewed by Why? Radio

Dr. Aubrey de Grey

………………………………………………………………………………………………………….

Dr. Aubrey de Grey in this interview explains and advocates for curing of aging, i.e., rejuvenation of the old to become youthful; preventing the youth from being old biologically, and other related points.

Aubrey de Grey is the U.S. Transhumanist Party’s Anti-Aging Advisor. He is a biomedical gerontologist based in Cambridge, UK and Mountain View, California, USA, and is the Chief Science Officer of SENS Research Foundation, a California-based 501(c)(3) charity dedicated to combating the aging process. He is also Editor-in-Chief of Rejuvenation Research, the world’s highest-impact peer-reviewed journal focused on intervention in aging.

This interview was conducted by Why? Radio, a program of the Institute for Philosophy in Public Life. You can also find it here.