Browsed by
Tag: Tissue Regeneration

Gene Cocktail Helps Hearts to Regenerate – Article by Steve Hill

Gene Cocktail Helps Hearts to Regenerate – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Steve Hill explains a technique that enables significant human tissue regeneration, so that it becomes possible to repair damaged human hearts. This technique can also be potentially applied to other body organs.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, March 4, 2018

The human heart is an organ whose cells rarely divide, making tissue repair and regeneration a huge problem following a heart attack. Many animals, such as zebrafish and salamanders, are different; they can regenerate damaged hearts easily.

As humans, we also once had the same regenerative capacity during our early development, but after we were born, we lost this ability. This is also true for many other organs, including the brain, spinal cord, and pancreas. The cells in these tissues divide very rarely if at all, and this is a big problem. But, what if we could get that regenerative ability back and repair damage to our hearts the way these amazing animals do?

Researchers have been trying for decades to find out how we can enjoy the same tissue regeneration, but they have met with limited success—until now.

Unlocking cell division in cardiomyocytes

A research team led by Dr. Deepak Srivastava, president of the Gladstone Institutes, has finally achieved this long sought-after goal in a study published in the journal Cell [1]. The researchers have developed an efficient and reliable way of making non-dividing adult cardiomyocytes divide so that they can repair damaged hearts.

They identified four genes that regulate cell division in adult cardiomyocytes. When all four of them are combined together, they cause the cardiomyocytes to re-enter the cell cycle and start dividing quickly. They also demonstrated that following heart failure, these combined genes improve cardiac function significantly.

The researchers tested the technique in animal models using cardiomyocytes derived from human stem cells. They stained newly divided cells with a special dye in order to track them; they found that between 15 to 20 percent of the cells divided and remained alive thanks to the four-gene combo. This is a vast improvement on previous studies, which have only managed around 1 percent cell division in adult cardiomyocytes.

The team also made the technique simpler by identifying drugs that could replace two of the four genes involved in the combination. This still produced the same result as using all four genes and is significantly easier, logistically speaking.

Could be used in multiple tissues

As mentioned, the heart is not the only tissue that has cells that either do not divide or do so very slowly. The researchers believe that their technique could also potentially be applied to encourage other tissues and organs to regenerate. This is because the four genes are not unique to the heart and are found in other cells around the body.

If science can unlock the same regeneration in nerve cells, pancreatic cells, and retinal cells, this could be the basis of therapies for heart failure, brain damage, diabetes, blindness, and many other conditions. The good news is these four genes encourage cell division the same way in mice, rats, and human cells.

Conclusion

Manipulating non-dividing cells and returning them to the cell cycle to boost regeneration in organs and tissues holds great potential. Scientists have been working for decades to achieve this in the heart, and now it has been achieved. The next big step is to translate this approach to humans, and we wish them the very best in their future research.

Literature

[1] Mohamed, T. M., Ang, Y. S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., … & Srivastava, D. (2017). Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Scientists Identify Genes Implicated in the High Regenerative Capacity of Embryos and ESCs – Press Release by Biogerontology Research Foundation

Scientists Identify Genes Implicated in the High Regenerative Capacity of Embryos and ESCs – Press Release by Biogerontology Research Foundation

Biogerontology Research Foundation


CREDIT: AGEX THERAPEUTICS, INSILICO MEDICINE & THE BIOGERONTOLOGY RESEARCH FOUNDATION

Below is a press release by Biogerontology Research Foundation on the regenerative capacity of embryos and embryonic stem cells. This press release was originally published here.

~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, January 18, 2018

 

Friday, January 12, 2018, London, UK: Researchers at Insilico MedicineAgeX Therapeutics and the Biogerontology Research Foundation have published a landmark study titled “Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells” in the journal Oncotarget.

In the study, researchers used deep-learning techniques to analyze gene expression data in embryonic stem cell (ESC) lines at varying stages of development in order to characterize the gene expression profile of cells right at the boundary of the embryonic-fetal transition, when embryos become fetuses and experience a remarkable reduction in their regenerative capacity. In essence, the study’s objective was to hone in on those genes responsible for the remarkable regenerative capacities of embryos and ESCs.

“This is another important step in the progress of Insilico Medicine and indicates that its suite of products is developing rapidly, with significant commercial revenues not far off,” said Jim Mellon, Trustee of the Biogerontology Research Foundation, Chairman of Juvenescence Limited and a key partner of Insilico Medicine.

Mimicking the gene expression profile of cells prior to the embryonic fetal transition in adult tissues and organs is the concept underlying one of the central and most ambitious therapeutic modalities being pursued by AgeX Therapeutics, namely induced Tissue Regeneration (iTR). Therapeutic elaboration of the insights derived from this study could pave the way for in-situ tissue regeneration, and its application to ageing and age-related disease.

“induced Tissue Regeneration (iTR) is one of the most promising therapeutic modalities for enabling in-situ tissue regeneration proposed to date, and one that is likely to bring substantial healthspan-extending effects if implemented. This landmark study paves the way toward that bright future. Interestingly, in its identification of COX7A1 as one of the genes implicated in the remarkable regenerative potential of embryos and ESCs, the study also extends the purview of these findings to novel potential cancer therapies as well,” said Franco Cortese, Deputy Director of the Biogerontology Research Foundation.

The authors also developed effective methods of deriving biologically-relevant information from these profiles, identifying the most interesting genes characterizing the regenerative capacity of ESCs, and performed additional experimental validation to support the findings of the study’s deep learning analysis. Interestingly, one of the genes implicated in the embryonic-fetal transition that the study identified, COX7A1, is dysregulated in a diverse array of cancer types, including breast, lung, kidney, bone and muscle. As such, the results of this study could be used create novel cancer therapies as well.

“AI is quickly becoming the main driver of progress in so many fields of science, technology and human endeavor that it is easy for one to lose count. From healthcare to finance to governance, AI is galvanizing rapid paradigm shifts all around us. Insilico Medicine is rapidly establishing themselves as the leader of AI for longevity, and the combination of their deep-learning expertise with the assets for expert experimental validation and interpretation possessed by AgeX Therapeutics is a partnership that has yielded significant synergistic results in using AI to yield novel insights into the biology of aging and charting the path toward next generation healthspan-extending therapies” said Dmitry Kaminskiy, Managing Trustee of the Biogerontology Research Foundation.

###

Paper Reference: West M, Labat I, Sternberg H, Larocca D, Nasonkin I, Chapman K, Singh R, Makarev E, Aliper A, Kazennov A, Alekseenko A, Shuvalov N, Cheskidova E, Alekseev A, Artemov A, Putin E, Mamoshina P, Pryanichnikov P, Larocca J, Copeland K, Izumchenko E, Korzinkin M and Zhavoronkov A. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells, Oncotarget. 2017; in press, https://doi.org/10.18632/oncotarget.23748

About the Biogerontology Research Foundation:

The Biogerontology Research Foundation is a UK non-profit research foundation and public policy center seeking to fill a gap within the research community, whereby the current scientific understanding of the ageing process is not yet being sufficiently exploited to produce effective medical interventions. The BGRF funds and conducts research which, building on the body of knowledge about how ageing happens, aims to develop biotechnological interventions to remediate the molecular and cellular deficits which accumulate with age and which underlie the ill-health of old age. Addressing ageing damage at this most fundamental level will provide an important opportunity to produce the effective, lasting treatments for the diseases and disabilities of ageing, required to improve quality of life in the elderly. The BGRF seeks to use the entire scope of modern biotechnology to attack the changes that take place in the course of ageing, and to address not just the symptoms of age-related diseases but also the mechanisms of those diseases.

About Insilico Medicine, Inc.:

Insilico Medicine, Inc. is a bioinformatics company located at the Emerging Technology Centers in Baltimore with R&D resources in 6 countries. The company is widely recognized by the industry for applying next-generation artificial intelligence technology to drug discovery and aging research. For its pioneering work in the applications of Generative Adversarial Networks (GANs) and Reinforcement Learning (RL) and collaborations with the pharmaceutical companies, it was selected as one of the Top 100 AI companies 2018 by CB Insights and Top 5 AI companies for social impact 2017 by NVIDIA. The company pursues internal drug discovery programs in cancer, dermatological, metabolic and CNS diseases, sarcopenia, fibrosis and senescence. Company website: http://www.insilico.com

About AgeX Therapeutics:

AgeX Therapeutics, Inc., a subsidiary of BioTime, Inc. (NYSE American: BTX), is a biotechnology company applying technology relating to cellular immortality and regenerative biology to aging and age-related diseases. The company has three initial areas of product development: pluripotent stem-cell-derived brown adipocytes (AGEX-BAT1); vascular progenitors (AGEX-VASC1); and induced Tissue Regeneration (iTR). Initial planned indications for these products are Type 2 diabetes, cardiac ischemia, and tissue regeneration respectively. For more information, please visit http://www.agexinc.com or connect with the company on Twitter or Facebook.