Browsed by
Tag: Salk Institute

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on June 7th, 2019. In this article, Mr. Hill discusses how he feels great about being over 40 years old, instead of the depressing feeling that many tend to have on their birthdays, because he is very aware of how close medical science is to curing age-related diseases. He goes on in discuss, in his opinion, two of the most promising research methods being sought by various companies to defeat age-related diseases.

~ Bobby Ridge, Assistant Editor, July 7, 2019


Not so long ago, it was my 44th birthday, and I’ve finally decided to write something that I’ve been reflecting on for a while. To some people, a birthday is a cause for celebration; for others, it is viewed as a bad thing.

Yes, if you take the negative view, you could see it as simply a reminder of being another year older and another year closer to the grave. However, this is not how I see it; in fact, I think quite the opposite. I see it as another year closer to our goal: the defeat of age-related diseases due to the progress of rejuvenation biotechnology that offers longer and healthier lives.

From my point of view, viewing birthdays, or, indeed, the passing of time, as a positive or negative thing is largely a question of knowledge and understanding of the aging research field, which ties in with what I want to address today.

Knowledge is power

During my work as a journalist, people often ask me how things are progressing in the field. This is, of course, a perfectly reasonable and understandable question to ask. While I am always more than happy to talk about the field and answer this question, I also urge people to delve deeper into the field so that they can learn and evaluate for themselves rather than simply taking my word for it.

Our website, including the Rejuvenation Roadmap, is a good resource to start learning and to hear the latest news, as are places such as FightAging and the SENS Research Foundation website. Conferences such as Ending Age-Related Diseases and Undoing Aging are also valuable places to learn more about what is happening in the field.

Sometimes, I encounter people outside, but also fairly frequently within, the community who can be somewhat pessimistic about the field and its progress. It is perfectly natural to be cautious about the unknown, but there comes a point at which caution becomes unwarranted pessimism. The “Science Will Not Defeat Aging in My Lifetime, so Why Bother?” argument is a classic example of this, and much of this is caused by a lack of knowledge and understanding of the field.

The Latin phrase scientia potentia est, meaning “knowledge is power”, is particularly apt here. Knowledge and understanding allow us to better evaluate a situation or a proposal and reach a conclusion. It is hard to reach an accurate conclusion about anything without all the facts in place, yet I often see people doing it. Of course, there are always people who will not put in the time and effort required to learn about a topic properly, so they make predictions without all the facts, but there really isn’t much we can do about these people.

However, as advocates and supporters, we can do our best to learn about such things ourselves, and this will also come in useful when speaking to others about the field, as there is nothing like having a good understanding of the topic to help you convey it to others. That does not mean you need to become a biologist and understand things to such deep levels but even a solid understanding of the basics can be a huge help when it comes to engaging with others on the subject and also for understanding where we are currently progress wise.

Future-positive

This relates to a second question people often tend to ask me, which is if I think that they or we have a chance of living long enough to see these technologies arrive.

Obviously, no one can predict the future, so this question, by its very nature, is a tricky one to answer. I generally avoid being too specific on the timeframe in which we will reach the goal of longer lives through science, but I am optimistic that people in my age group, even perhaps older, have a reasonable chance of making the cut.

The reason that I am generally optimistic about the future is mostly that, as a journalist who speaks to hundreds of researchers, each focused on a part of the puzzle, I get an almost unique picture of the field. I can see the broader landscape and how and where things in the field or related fields connect or may connect in the future. A breakthrough in a related medical field may not have immediately apparent utility in aging research at first glance, but a deeper look could reveal hidden potential.

This fairly unique insight, combined with the knowledge that I have collected over the years working in the field, makes me fairly optimistic about the future and my place in it. As I have said a number of times in the past, the defeat of age-related diseases will not suddenly happen overnight; there is unlikely to be a single moment at which humanity goes from having no choice about aging to having control. It is far more likely that there will be steady progress, with incremental breakthroughs along the road, that will ultimately reach the goal.

Reasons to be cheerful

I would like to touch upon two of the most promising therapies that I am most interested in and believe may have a big impact in the near future (10-20 years) and that may help pave the way for major changes to how society thinks about and treats aging. Both of these therapies directly address one of the nine proposed causes of aging and thus if they work they have the potential to be transformative in healthcare. Of course, there are more therapies in development and at various stages of progress which also address the other causes of aging but these two are what I am most enthusiastic about presently. I urge you to explore the provided links to resources and learn more about each one.

Senolytics

No list of promising technologies would be complete without talking about the senescent cell-clearing drugs and therapies known as senolytics. Senescent cells are aged or damaged cells that should destroy themselves via a process known as apoptosis but, for various reasons, do not do so; instead, they hang around, sending out inflammatory signals that harm nearby healthy cells, block effective tissue repair, and contribute to numerous age-related diseases.

One proposed solution to these problem cells is to remove them by causing them to enter apoptosis, as originally intended, by using senolytic drugs and therapies. Removing these cells in mouse studies has produced some remarkable results, with mice often living healthier and longer lives as well as reversing some aspects of aging.

The race is now on to bring these drugs to people, and a number of companies are developing them right now. So far, UNITY Biotechnology has seen the most progress, and the company is already conducting human trials of its lead candidate drug (UBX0101) for the treatment of osteoarthritis. It has another candidate drug (UBX1967) closely behind; this drug is poised to enter human trials for the treatment of age-related macular degeneration, diabetic macular edema, diabetic retinopathy, and glaucoma. Based on recent comments from UNITY, we are anticipating the initial results of human trials in the next few months; hopefully, the news will be positive.

With the number of companies working on these therapies, it is fair to be optimistic about their potential to address multiple age-related diseases given that senescent cells are a proposed root cause of aging. You can also check out the Rejuvenation Roadmap to see which companies are working on senolytics and how they are progressing.

Partial cellular reprogramming

Cells can be reverted back to an earlier developmental state, known as induced pluripotency, using reprogramming factors, and this process effectively makes aged cells functionally young again in many ways. Ever since its first discovery, there has been a great deal of interest in this area of aging research.

The problem with inducing pluripotency is that the cell loses its identity and forgets what cell type it currently is, as it becomes a new kind of cell capable of being guided into changing into any other cell type, much like our cells during development. This is great for early human development, but as adults, having our cells forget what they are is bad news. Therefore, researchers have wondered if it is possible to reset a cell’s age without resetting its cell memory, and the answer appears to be yes!

Thankfully, during the reprogramming of a cell back to pluripotency, the cell’s age is one of the first things to be reset before the cell memory is wiped, and it appears possible to partially reprogram the cell so that only aging is reset. We have talked about the potential of partial cellular reprogramming and how it is similar to hitting the reset button on aging in a previous article, but, needless to say, if we can find a way to safely partially reprogram our cells, it could have a dramatic impact on how we age and may allow us to remain more youthful and healthy.

In terms of progress, partial reprogramming has already been demonstrated in mice, and now a number of groups, including Turn.Bio, the Salk Institute, Life Biosciences, Youthereum Genetics, and AgeX, are developing therapies based on partial reprogramming, which is essentially the resetting of cells’ epigenetic states (what genes are expressed) from an aged profile to a more youthful one, again directly targeting one of the proposed root causes of aging.

This approach is likely to be quite a few years away, but I think it is plausible that it could be in human trials in the next decade, and it is probably the approach that interests me the most in the field.

In closing

The truth is we cannot predict the future because it is not set in stone, so we cannot be totally certain if or when rejuvenation technologies will arrive. The best we can do is learn as much as we can about the field and try to reach a reasonable conclusion based on the situation as it is now.

The field is advancing steadily, and we should be optimistic but not complacent about progress. We should be mindful of being too negative and, equally, of being too positive without ample justification. Blind optimism is as bad as blind pessimism, and we should always strive for informed optimism.

That said, given the progress being made, I am optimistic about my chances based on the evidence to date. This is why I do not mind birthdays and why I find them positive experiences rather than negative ones. Arm yourself with knowledge, and perhaps you too will agree with me and understand why I am future positive.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity, created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

Alzheimer’s Drug Turns Back the Clock in Mitochondria – Article by Steve Hill

Alzheimer’s Drug Turns Back the Clock in Mitochondria – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill discusses an experimental drug, J147, for treating Alzheimer’s disease and also how Alzheimer’s disease is closely linked to aging.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, January 26, 2018

J147 is an experimental drug that has been shown to treat Alzheimer’s disease, and it also appears to reverse some aspects of aging. It is also poised to enter human clinical trials in the near future, although how it works has been somewhat of a puzzle.

A new study  published in the journal Aging Cell has changed all that, and the results are quite intriguing [1]. Researchers at the Salk Institute have solved the mystery of how J147 works and why it makes old flies, mice, and cells more youthful.

Rejuvenating mitochondria

The drug apparently works because it binds to a protein found in mitochondria, the powerhouses of cells; this, in turn, causes cells to function in a more youthful manner. Mitochondrial dysfunction is one of the hallmarks of aging and is thought to be a key reason why we age and develop age-related diseases [2]. This drug appears, at least partially, to address some of that dysfunction.

Finding the target of J147 was the key to revealing the link between Alzheimer’s disease and the aging process. It was the critical information the researchers needed and was holding the drug back from clinical trials.

Dave Schubert, head of Salk’s Cellular Neurobiology Laboratory, and his team originally developed the J147 drug in 2011. The team screened numerous plant-sourced compounds with the potential to reverse the cellular and molecular signs of aging in the brain. The drug was developed as a modified version of a molecule found in the spice curcumin, a common ingredient in Asian foods such as curry.

Since then, the researchers have shown that J147 can reverse memory deficits, increases the production of brain cells, and slows the progression of Alzheimer’s in mice [3]. However, at that point, they did not understand how J147 worked.

Finding the target

During the new study lead by Dave Schubert and Salk Research Associate Josh Goldberg, the researchers used a number of approaches to find out how J147 worked. They eventually identified that the target of J147 was the mitochondrial protein known as ATP synthase, specifically ATP5A, a subunit of that protein. ATP synthase is involved in the mitochondrial generation of ATP, which cells use for energy.

The researchers demonstrated that by reducing the activity of ATP synthase, they were able to protect neuronal cells from a number of toxicities associated with the aging of the brain. One reason for this neuroprotective effect is thought to be the role of excitotoxicity in neuronal cell damage.

Excitotoxicity is the pathological process by which neurons are damaged and killed by the overactivation of receptors for the excitatory neurotransmitter glutamate. Think of it being a bit like a light switch being turned on and off so rapidly that it ends up causing the light bulb to blow.

Recently, the role of ATP synthase inhibition for neuroprotection against excitotoxic damage was demonstrated in a mouse study [4]. The second study showed that mouse models expressing the human form of mutant ATPase inhibitory factor 1 (hIF1), which causes a sustained inhibition of ATP synthase, were more resilient to neuronal death after excitotoxic damage. This data is consistent with this new J147 study, in which an increase in IF1 in the mice reduced the activity of ATP synthase (specifically ATP5A) and was neuroprotective.

ATP synthase is implicated in aging

ATP synthase has previously been shown to influence aging in C. elegans worms and flies. Given that aging is the greatest risk factor for developing Alzheimer’s disease, it is no surprise that the target of the drug is also involved in the aging process.

The team also revealed that by modulating the activity of ATP synthase, they could influence the levels of ATP and other molecules and were able to encourage healthier, more stable mitochondria during aging. Mice given the compound showed profound changes, appearing to look younger at a cellular and molecular level.

The researchers believe that these results are not only encouraging for the treatment of Alzheimer’s, they suggest that J147 may also be useful in treating other age-related diseases.

“People have always thought that you need separate drugs for Alzheimer’s, Parkinson’s and stroke,” said Dave Schubert. “But it may be that by targeting aging we can treat or slow down many pathological conditions that are old-age-associated.”

With J147 having just completed the FDA required toxicology testing in animals, the next step is phase 1 human clinical trials, and the road to approval begins.

Conclusion

It is very heartening to hear important researchers suggesting that in order to treat age-related diseases, one needs to treat the aging processes themselves. This is the exactly what Dr. Aubrey de Grey and others have been saying for many years. It is good to hear more voices joining the call to tackle age-related diseases at their root: the hallmarks and damages where they all begin.

The process of age-related disease begins long before the familiar signs and diagnoses are made; by targeting the early processes that are not given specific disease names, we might yet defeat horrific diseases, such as Alzheimer’s, which rob us of who we are.

Literature

[1] Joshua Goldberg et al. The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell, 2018 DOI: 10.1111/acel.12715
[2] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
[3] Prior, M., Dargusch, R., Ehren, J. L., Chiruta, C., & Schubert, D. (2013). The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimer’s research & therapy, 5(3), 25.
[4] Formentini, L., Pereira, M. P., Sánchez‐Cenizo, L., Santacatterina, F., Lucas, J. J., Navarro, C., … & Cuezva, J. M. (2014). In vivo inhibition of the mitochondrial H+‐ATP synthase in neurons promotes metabolic preconditioning. The EMBO journal, 33(7), 762-778.

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.