Rejuvenation Research Is Now a Mainstream Topic â Article by Steve Hill
Steve Hill
Editor’s Note: In this article, originally published on August 26, 2019, by the Life Extension Advocacy Foundation (LEAF), Mr. Steve Hill reviews an MIT Technology Review article authored by David Adam. Mr. Adam gives his view of the research field of aging, and Mr. Hill is impressed by the factualism compared to the MIT Technology Review’s previous articles that covered the topic. Mr. Hill goes on to discuss aging and lifespan in other species and address the question: Is aging a disease, and does it really matter?
~Bobby Ridge, Assistant Editor, September 9, 2019
It is a sure sign that the tide has turned when mainstream news outlets and magazines start publishing positive articles about aging research and the prospects of rejuvenation.
A refreshing change
Today, I want to highlight an article in MIT Technology Review in which the author, David Adam, gives a sensible and measured overview of what is happening in the field and manages to sidestep the usual negativity and misconceptions that often plague popular science pieces.
Since ancient times, aging has been viewed as simply inevitable, unstoppable, natureâs way. âNatural causesâ have long been blamed for deaths among the old, even if they died of a recognized pathological condition. The medical writer Galen argued back in the second century AD that aging is a natural process.
His view, the acceptance that one can die simply of old age, has dominated ever since. We think of aging as the accumulation of all the other conditions that get more common as we get olderâcancer, dementia, physical frailty. All that tells us, though, is that weâre going to sicken and die; it doesnât give us a way to change it. We donât have much more control over our destiny than a Cyclops.
But a growing number of scientists are questioning our basic conception of aging. What if you could challenge your deathâor even prevent it altogether? What if the panoply of diseases that strike us in old age are symptoms, not causes? What would change if we classified aging itself as the disease?
The article skips the sensationalism and assumptions that many journalists typically make about aging research; instead, we get a solid piece of factual journalism. This is in stark contrast to the reporting done by this outlet a few years ago, as it had published irrationally skeptical and frequently negative coverage of the field and the science behind it.
This may be partially due to changes to the editorial staff at the magazine, which happened in 2017, but it is also indicative of the wider acceptance of the idea that we may be able to do something about aging. The same magazine has even published a special issue entitled Old Age is Over! â If you want it, which takes a deeper dive into the topic, though this is paid content.
There may be a choice about how we age
For millennia, it has been assumed that aging is a one-way street and that we must simply accept that there is nothing we can do about it, aside from facing age-related ill health with stoicism. However, the situation has somewhat changed. As researchers have discovered more about how aging works, the processes driving it, and the results from model animals, it has become increasingly clear to many people that something might be done about aging in order to delay, prevent, or potentially reverse age-related diseases.
We already know that a number of species do not age; this phenomenon is known as negligible senescence. This simply means that the organism does not show a decline of survival characteristics, such as muscle strength, mobility, and senses. Such species also do not experience an increased mortality rate with advancing age or a loss of reproductive capability with age.
These species tend to have much more efficient repair systems that are capable of offsetting and repairing damage rapidly enough to prevent it from accumulating and snowballing out of control as it does in humans. We are relatively long-lived as a species, but, compared to some longevity champions, such as the bowhead whale at 200 years plus, the Greenland shark at 400 or more years, and the ocean quahog clam, which lives at least 507 years, our lifespan is relatively brief.
So, the race is now on to see if we can develop therapies to repair age-related damage, slow down how fast that damage accrues, and see if we can emulate these kings of longevity. The key take-home message here is that there is no biological reason that humans might not live longer, healthier lives if such therapies are developed.
Exactly how long that might be is a matter of speculation; it could be a few years, a decade or two, or perhaps more. The key point is that the researchers who are developing these therapies are aiming to make those extra years healthy ones, and that is surely something that most people can get behind.
Is aging a disease, and does it really matter?
Some researchers propose that aging is a disease, and while this is a somewhat contentious view, it has some merit and is absolutely worthy of further discussion. We discussed if aging is natural or pathological in a previous article, and while the case can certainly be made that aging is a disease, it may more accurately fit the description of a co-morbid syndrome: a group of symptoms that consistently occur together and a condition characterized by a set of associated symptoms.
Whether or not they believe in either the disease hypothesis or maximum life spans, most experts agree that something has to change in the way we deal with aging. âIf we donât do something about the dramatic increase in older people, and find ways to keep them healthy and functional, then we have a major quality-Âof-life issue and a major economic issue on our hands.â â Dr. Brian Kennedy
This matter is largely a matter of semantics, and the important thing is that, from a regulatory point of view, including aging as a disease state or syndrome would make it easier to develop therapies that directly target the aging processes themselves. Currently, therapies must focus on single diseases in order to progress through clinical trials, which is not the most optimal approach.
However, it is my personal view that this situation will not change much until the first successful human demonstration of rejuvenation therapy occurs. Until then, researchers will continue to work within the current regulatory system, and while this is, by its nature, slower, it does not prevent progress being made. Fortunately, there are now a lot of companies working in this space, and a number of therapies are quite far along in development.
A therapy that works in humans against one age-related disease by targeting an aging process directly could potentially treat a slew of other related diseases, and so any successful therapy making it through the system would likely rapidly see off-label usage for other, similar conditions.
Conclusion
In closing, it is refreshing to see more balanced and fair reporting on the field and the science of aging rather than the negative and highly biased material that this outlet had published prior to 2017. Reasonable skepticism is perfectly understandable, especially in a field as cutting-edge as rejuvenation biotechnology, which is charting unknown waters and attempting to do what has long been thought impossible.
However, the weight of evidence, the results of a myriad of animal studies demonstrating age reversal, and the rapid increase of scientific understanding should balance that skepticism in anyone interested in science and the actual facts. A magazine devoted to science really should be at the top of its game when reporting the facts, and this and other recent articles on the topic have been much closer to this mark. Oh my, how times have changed.
Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report â Top-100 Journalists covering advanced biomedicine and longevity, created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.