Browsed by
Tag: Life Extension Advocacy Foundation (LEAF)

Citi Lists Anti-Aging Medicines in Top 10 Disruptive Technologies – Article by Steve Hill

Citi Lists Anti-Aging Medicines in Top 10 Disruptive Technologies – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on August 30th, 2018. In this article, Mr. Hill presents Citi’s latest disruptive innovation publication, in which anti-aging medicine is #2 on the list! This is one more example, out of the myriad of examples, of how big of an impact this field is making. One of the reasons Citi considers the development of anti-aging medicines to have a high impact is the fact that “U.S. health spending, which increases significantly with age in concordance with age-related diseases, is expected to exceed ~20% of U.S. gross domestic product (GDP) by 2025.” 

~Bobby Ridge, Assistant Editor, June 27, 2019

Citi has produced another of its Disruptive Innovations publications, which takes a look at what it considers to be the top ten disruptive technologies. It is a sign of the changing times that anti-aging medicines are number 2 in its list.

1. All-Solid-State Batteries
2. Anti-Aging Medicines
3. Autonomous Vehicle Networks
4. Big Data & Healthcare
5. Dynamic Spectrum Access
6. eSports
7. 5G Technology
8. Floating Offshore Wind Farms
9. Real Estate Market Disruptors
10. Smart Voice-Activated Assistants

What was considered fringe science a decade ago is now rapidly becoming a mainstream industry. Our understanding of aging has advanced quickly in the last 10 years, and the tools and innovations seem to come more quickly with each passing year. A variety of therapies that target different aging processes are in development, and some are at fairly advanced stages; if you are interested in their progress, check out the Rejuvenation Roadmap.

Advancing Health by Turning Back Time

The legend of the restorative powers of the Fountain of Youth has fascinated human civilization throughout the generations, dating all the way back to the Greeks (e.g., Herodotus). Other hypothetical conduits for a return to a state of youthfulness (e.g. the Philosopher’s Stone) have featured prominently throughout human civilization as alluring, but equally elusive. Fast forward to 2018, and very recent cutting-edge scientific breakthroughs may, at long last, fundamentally explain why we age. This rapid scientific progress could spawn FDA-approved therapeutics potentially in the next decade, with the primary goal of keeping us younger and alive for longer.

Today, the anti-aging market, while huge (~$200 billion globally), is largely restricted to non-therapeutics (cosmetic products and procedures). At the same time, U.S. health spending, which increases significantly with age in concordance with age-related diseases (see Figure 8), is expected to exceed ~20% of U.S. gross domestic product (GDP) by 2025. Thus, with scientific breakthroughs emerging this decade on the cellular origins of why the tissues in our body’s age, novel anti-aging medicines may become one of the next big disruptions in the healthcare market.

Senolytics are the main focus here, which is logical given that, of all the therapies being developed to combat aging, they are the farthest along in the pipeline. These analysts suggest that we could see senolytics arrive by 2023; while these drugs are only part of the full suite of therapies required to bring aging under medical control, it is likely that we will see senolytics and, perhaps, a few other therapies arrive at that time.

First Senolytic Therapy Could Be Approved by 2023

The first senolytic therapy in clinical trials is a compound by Unity, UBX0101, which is a small-molecule drug that functions by inducing apoptosis (i.e., programmed cell death), specifically in senescent cells. The company is first testing UBX0101 locally in patients with moderate osteoarthritis of the knee, which is a substantially large market (~17 million patients). Initial proof-of-concept data from the Phase 1 trial are expected in the first quarter of 2019. If successful in later clinical development through Phase 3, UBX0101 could become commercially available by 2023.

While speculative given the novelty of the senolytic therapeutic strategy, a successful therapeutic that could resolve osteoarthritic knees and return knee tissue to a more youthful state could have a negative impact on the knee-replacement surgery market (currently projected to grow to >3 million knee replacements per year by 2030). Because other senolytics are being developed for multiple
ophthalmologic (wet AMD, glaucoma, diabetic retinopathy) and pulmonary (COPD, idiopathic pulmonary disease) indications, within the next ~10–20 years patients with a range of age-related diseases may experience a decreased need for therapies now considered standard of care.

UNITY, Siwa, and Oisin are all mentioned in the report. and it is worth having a read, as the section about aging is fairly large and detailed and takes a look at past and present attempts to combat age-related diseases by targeting the aging processes directly.

Conclusion

It is beyond question that progress and interest in the field is growing quickly, and with some therapies now entering human trials, we could be close to a societal tipping point at which more people start to take notice of the potential of new medical approaches. There is a long way to go before we can end age-related diseases, but the tide has turned.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity, created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

 

A Poor Diet May Lead to Dysbiosis and Age-Related Diseases – Article by Steve Hill

A Poor Diet May Lead to Dysbiosis and Age-Related Diseases – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on May 27, 2019. This article reminds us of the strong connection between our gut microbiome and ageing, along with a review of a study that provides greater insight into the mechanism of how a poor diet can contribute to age-related diseases.

~ Bobby Ridge, Assistant Editor, June 21, 2019

The role that the gut microbiome plays in aging is increasingly being appreciated in the research world as more evidence arrives to support it. A new publication reviews the various supporting evidence and takes a look at the gut microbiome in the context of poor diets and how they may facilitate the progression of dysbiosis and disease [1].

What is the microbiome?

The microbiome is the varied community of bacteria, archaea, eukarya, and viruses that inhabit our guts. The four bacterial phyla of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria comprise 98% of the intestinal microbiome.

The microbiome is a complex ecosystem whose activity regulates multiple functions of the gut and also interacts and helps to regulate our immune systems and energy metabolisms. The beneficial bacteria in our guts also help to prevent the growth of harmful bacteria, protect us from invasive microorganisms, and help to maintain the integrity of the intestinal barrier.

As we age, the diversity and numbers of beneficial bacteria tend to decline. There is a strong correlation between decreased microbiome diversity and declining health, and microbiome health has been associated with a number of metabolic conditions, such as type 2 diabetes and obesity. On the other hand, older people who maintain a more healthy gut microbiome tend to live longer and in better health.

We have talked about the role that dysbiosis, the age-related changes to the gut microbiome, plays in the loss of intestinal barrier integrity, which allows bacteria to infiltrate deeper into the body. This is likely to contribute to inflammaging, the chronic, age-related inflammation that drives disease progression and harms tissue regeneration.

Age-related gut dysbiosis is a microbial imbalance in the gut that favors a shift towards proinflammatory microbes and a decline of beneficial microbes, such as those responsible for creating butyrate (and other beneficial short-chain fatty acids), a compound vital for creating the energy that colonocytes and other gut wall cells feed on. These changes lead to chronic inflammation and impair the intestinal barrier, causing it to leak, hence the common name for the condition being “leaky gut” [2].

Abstract

Inflammatory diseases, such as inflammatory bowel diseases, are dramatically increasing worldwide, but an understanding of the underlying factors is lacking. We here present an ecoevolutionary perspective on the emergence of inflammatory diseases. We propose that adaptation has led to fine-tuned host-microbe interactions, which are maintained by secreted host metabolites nourishing the associated microbes. A constant elevation of nutrients in the gut environment leads to an increased activity and changed functionality of the microbiota, thus severely disturbing host-microbe interactions and leading to dysbiosis and disease development. In the past, starvation and pathogen infections, causing diarrhea, were common incidences that reset the gut bacterial community to its “human-specific-baseline.” However, these natural clearing mechanisms have been virtually eradicated in developed countries, allowing a constant uncontrolled growth of bacteria. This leads to an increase of bacterial products that stimulate the immune system and ultimately might initiate inflammatory reactions.

Easily digestible, energy-dense, low-fiber-content foods harm the microbiome

It is known that a diet with easily digestible, energy-dense, low-fiber-content is harmful to health and leads to the formation of visceral fat, the type of fat tissue that is stored deeper than normal belly fat and that forms around your major organs, including the liver, pancreas, and kidneys. Visceral fat also contributes to chronic inflammation and hence to inflammaging, helping to speed up aging and disease progression.

It also appears to influence the gut microbiome and cause changes to the bacterial populations in the gut. The strength of this influence remains to be seen, but its effect on health via changes to the microbiome may be considerable and equally as important as physical activity for health and aging.

Conclusion

This adds yet more fuel to the fire, making it increasingly clear that microbiome health and exercise are the foundations of longer, healthier lives and that we should do all we can now to ensure we achieve both things as part of a personal longevity strategy.

Science is progressing rapidly, especially in the aging field, but this is no reason to be complacent. Science, especially medicine, is, by its nature, complex and can be unpredictable. We all hope that rejuvenation therapies will arrive sooner rather than later, but it is hard to predict when they will be available; this could be in a decade, or it could be longer than we think. For that reason, we should do all we can now to increase our odds of making the cut.

Exercise and balanced diets are relatively low-tech and low-cost approaches to healthy longevity, and everyone in the community should be engaging in these practices if they are serious about living long enough to benefit from the arrival of more robust rejuvenation therapies.

Literature

[1] Lachnit, T., Bosch, T. C., & Deines, P. (2019). Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development—an Evolutionary Perspective. mBio, 10(3), e00355-19.

[2] Cullender TC, Chassaing B, Janzon A, et al. Innate and adaptiveimmunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 2013; 14: 571–81.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine,  Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

Study Shows Telomerase Gene Therapy Does Not Increase Cancer Risk – Article by Steve Hill

Study Shows Telomerase Gene Therapy Does Not Increase Cancer Risk – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on August 27, 2018. This article takes another step forward toward clearing up a common misconception that many scientists and laypeople hold, i.e., the notion that extending telomeres causes cancer. Mr. Hill cited a recent article published in the journal PLOS Genetics, in which researchers found there to be no increase in cancer, even when telomeres were extended in mice from cancer-prone mouse strains. Hopefully this article will help researchers reevaluate this misconception so this very important age-reversal research will be advanced much faster.

~ Bobby Ridge, Assistant Editor, June 20, 2019

Researchers have demonstrated that telomerase gene therapy does not increase the risk of cancer, even in strains of mice that are particularly susceptible to cancer [1].

A tale of telomeres

Short telomeres trigger cellular senescence and are thought to be one of the primary hallmarks of aging, which has led to various researchers seeking ways to restore the telomeres in order to prevent cells from dying and to encourage division and tissue regeneration. We won’t go over the basics of telomeres and how they influence aging  here, but if you would like to learn more, check out our telomeres article, which explains it all.

Ever since Dr. Maria Blasco and her team at the Spanish National Cancer Research Centre (CNIO) first used telomerase gene therapy in mice back in 2012, a debate has raged about the potential of telomerase for regenerating tissue and reversing some aspects of aging versus the risk of it causing cancer.

Despite the concerns, it has proved effective against infarction by spurring regeneration of cardiac tissue and in treating aplastic anaemia and idiopathic pulmonary fibrosis in mice; all of these conditions are associated with critically short telomeres.

The CNIO’s Telomeres and Telomerase Group, which conducted the new study, has been investigating the potential of using telomerase therapy to treat age-related diseases for many years. Its 2012 publication featured a specially developed gene therapy that used an adeno-associated virus (AAV) to deliver a payload to cells that reactivated the telomerase gene, which can restore lost telomeres by creating the telomerase enzyme, and it appeared to delay and reverse certain aspects of aging [2].

Its AAV therapy is special in that the vectors do not integrate into the genomes of the target cells. Therefore, the telomerase activation only lasts for a few cell cycles before its effects cease. This transient activation of telomerase makes for a safety net, as unlimited cell division is only a step away from cancer.

Abstract

Short and dysfunctional telomeres are sufficient to induce a persistent DNA damage response at chromosome ends, which leads to the induction of senescence and/or apoptosis and to various age-related conditions, including a group of diseases known as “telomere syndromes”, which are provoked by extremely short telomeres owing to germline mutations in telomere genes. This opens the possibility of using telomerase activation as a potential therapeutic strategy to rescue short telomeres both in telomere syndromes and in age-related diseases, in this manner maintaining tissue homeostasis and ameliorating these diseases. In the past, we generated adeno-associated viral vectors carrying the telomerase gene (AAV9-Tert) and shown their therapeutic efficacy in mouse models of cardiac infarct, aplastic anemia, and pulmonary fibrosis. Although we did not observe increased cancer incidence as a consequence of Tert overexpression in any of those models, here we set to test the safety of AAV9-mediated Tert overexpression in the context of a cancer prone mouse model, owing to expression of oncogenic K-ras. As control, we also treated mice with AAV9 vectors carrying a catalytically inactive form of Tert, known to inhibit endogenous telomerase activity. We found that overexpression of Tert does not accelerate the onset or progression of lung carcinomas, even when in the setting of a p53-null background. These findings indicate that telomerase activation by using AAV9-mediated Tert gene therapy has no detectable cancer-prone effects in the context of oncogene-induced mouse tumors.

More support for telomerase gene therapy

Despite this safety measure, the medical use of telomerase therapy has been held back due to concerns of cancer risk, so the researchers at CNIO set out to see if this concern is justified.

To do this, they used this gene therapy in a mouse model that is at high risk of lung cancer. Their results showed that activating the telomerase gene via their gene therapy does not increase the risk of developing cancer, not even in this cancer-prone mouse strain.

These findings suggest that this gene therapy appears to be safe even in a pro-cancer environment. The authors chose this cancer-prone mouse strain to create a “killer experiment”, which creates a worst-case scenario that tests a hypothesis to its limit; if the hypothesis holds true despite the extreme scenario, it shows that the hypothesis is good. Because this therapy did not increase cancer risk in this extremely vulnerable mouse population, it demonstrates that telomerase gene therapy is possibly safe enough to use in humans.

The road ahead

The safety and utility of telomerase therapy is becoming more apparent with each passing year. The purpose of this new study was to demonstrate the plausibility of using telomerase to safely treat many diseases that currently have no cure, such as pulmonary fibrosis, and to help speed up its progress into human clinical trials.

Conclusion

The potential of telomerase gene therapy has long been debated amid cancer concerns, but this experiment suggests that those concerns are unfounded. There is no doubt that telomerase can and does regenerate tissue when it is delivered via gene therapy and that it does reverse various aspects of aging in multiple models.

Can we safely use what some people describe as a double-edged sword and apply it the fight against aging? This experiment strongly suggests that yes, we can.

Literature

[1] Muñoz-Lorente, M. A., Martínez, P., Tejera, Á., Whittemore, K., Moisés-Silva, A. C., Bosch, F., & Blasco, M. A. (2018). AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS genetics, 14(8), e1007562.

[2] de Jesus, B. B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., & Blasco, M. A. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO molecular medicine, 4(8), 691-704.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity created by the Aging Analytics Agency. His work has been featured in H+ magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, and, Keep me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

The Future of Pensions – Article by Nicola Bagalà and Michael Nuschke

The Future of Pensions – Article by Nicola Bagalà and Michael Nuschke

Nicola Bagalà and Michael Nuschke


Editor’s Note: The U.S. Transhumanist Party features this article by Nicola Bagalà and Michael Nuschke of the Life Extension Advocacy Foundation (LEAF), originally published on the LEAF site on May 15th, 2019.  The article brings attention to and responds to concerns related to the impacts of increased longevity on pension systems, a possible result of our mission of ending age-related diseases, which the U.S. Transhumanist Party supports as part of our policy goals.

~ Brent Reitze, Director of Publication, United States Transhumanist Party, June 15th, 2019


If you work in social security, it’s possible that your nightmares are full of undying elderly people who keep knocking on your door for pensions that you have no way of paying out. Tossing and turning in your bed, you beg for mercy, explaining that there’s just too many old people who need pensions and not enough young people who could cover for it with their contributions; the money’s just not there to sustain a social security system that, when it was conceived in the mid-1930s, didn’t expect that many people would ever make it into their 80s and 90s. Your oneiric persecutors won’t listen: they gave the country the best years of their lives, and now it’s time for the country to pay them their due.

When you wake up, you’re relieved to realize that there can’t be any such thing as people who have ever-worsening degenerative diseases yet never die from them, but that doesn’t make your problem all that better; you still have quite a few old people, living longer than the pension system had anticipated, to pay pensions to, and the bad news is that in as little as about 30 years, the number of 65+ people worldwide will skyrocket to around 2.1 billion, growing faster than all younger groups put together [1]. Where in the world is your institution going to find the budget?

That’s why, whether you work in social security or not, the words “life extension” might make you feel like you were listening to an orchestra playing Beethoven’s Fifth Symphony with forks on a blackboard; we’re likely to have a pension crisis on our hands as it is because of the growth in life expectancy, and some people have the effrontery to suggest that we should make life even longer?!

Why, yes, some people do have the effrontery, and believe it or not, it may actually be a good idea—possibly, and only apparently counterintuitively, the idea that will prevent the pension crisis from happening in the first place.

Why retirement?

Suppose for a moment that human aging never existed and that, barring accidents and communicable diseases, people went on living for centuries—their health, independence, and most importantly, ability to work, remaining pretty much constant over time; in order to tell apart a 150-year-old from a 25-year-old, you’d have to look at their papers.

In a scenario like this, it’s difficult to imagine why any government would go through the trouble of setting up a pension system that works the way the current one does. It would make sense to have measures in place to support people who couldn’t work after being paralyzed by injuries, but paying out money to perfectly able-bodied people to do nothing for the rest of their lives just because they’re over 65 would make no sense at all. It’s surely possible that, after 40 years of work, you’d rather be on vacation forever, but it’s somewhat unrealistic to expect that your country would be prepared to pay you a pension for centuries to come, in exchange for a meager 40 years of contributions, simply because you’re tired of working.

In other words, if people past a certain age have a right to retire until death and receive a pension, it’s essentially because, past that certain age, their health tends to worsen to the point that they’re unfit for work, and it can be expected to worsen in the following years; it’s not because the government or insurance companies feel like sending people on indefinite paid vacations. Depressing, perhaps, but true.

Of course, you could try to put a positive spin on this and look at retirement as a time of financial independence, when, either because you receive a pension or you have enough savings, you can enjoy life without having to go to work every day. This is a much better way to look at it, but we must account for the fact that most people who retire do so either because they hit retirement age or because other circumstances, such as ill health, forced them to retire early [9]—not because they managed to save up enough to retire in their 40s. The health of average retirees doesn’t interfere just with their ability to work but also to enjoy life in general. Most people over the age of 65 suffer two or more chronic illnesses [2,3,4]; the risk of developing diabetescancercardiovascular diseasesdementia, and so on skyrockets with age [5], and your financial independence (not to mention your life in general) would be a lot more enjoyable if you didn’t have to put up with any of these.

Retirement 101

The takeaway here is that retirement exists out of necessity more than desire, and even if you try to look at it from a different angle, you’ve still got the problem of the burden represented by age-related diseases. Given these facts, it’s important to understand how retirement works before we can establish if and why the feared pension crisis expected in a few decades from now is actually going to happen and whether life extension will make the problem better or worse.

A pension is a regular payment typically paid monthly to retirees. It can be paid to individuals by governments or employers, or it can come from personal savings, often in the form of special individual retirement accounts that provide some tax incentive to save. This three-pillar system, devised around a hundred years ago, exists in several countries around the world. The purpose is to provide an income after people stop working, i.e. during retirement until death.

Often, pensions can be received only after a certain age or number of years of work and would be deferred if you retire before the minimum is reached; if you decide to retire at age 30, well before you hit retirement age or have worked anywhere near the minimum number of years that you were supposed to, you’re going to wait for a while before you see a dime from your pension.

The funding of a pension depends on the type of pension. In the case of government pensions, like those paid by Social Security in the U.S., the funding is a combination of individual contributions (paycheck deductions) and government funding. Federal and state regulations are in place to ultimately ensure that the future pension income “belongs” to each individual contributor, but of course, contributions that you pay out today aren’t simply set aside for thirty years until you can collect them; they’re used to pay the pensions of present-day retirees; similarly, the money owed to pay your pension will come from the contributions of the workforce at the time of your retirement.

Why a crisis might be on its way

This pension system works well under the assumptions made back when it was devised, but, a hundred years later, things aren’t quite the same anymore.

For example, in the 1930—when the US Social Security system was conceived—the average life expectancy at birth was about 58 for men and 62 for women, whereas the retirement age was 65. This doesn’t mean that everyone checked out before they could cash in, because life expectancy at birth was pulled down by a higher infant mortality; in reality, people who reached adulthood had respectable chances to make it to retirement age and go on to collect their pensions for up to about 13 years; that is, just about before they hit age 80. However, in the year 2015, life expectancy at birth in the US was 79.2, which is around the maximum age that people were expected to reach at the dawn of the pension system; in 2014, the remaining life expectancy at age 79 of people in the US was 8.77 years for men and 10.24 for women. Therefore, in a worst-case scenario, people today can expect to live at least well above the maximum expected lifespan of the 1930s, and, in a best-case scenario, ten additional years. (From the point of view of the pension payer, best- and worst-case scenarios are probably the other way around.) The global average life expectancy in 2015 was 71.4, and even though the remaining life expectancy at that age varies depending on the country, it’s not difficult to see why the funding costs of pensions are mushrooming—simply put, people are living for longer; therefore, they need to be paid pensions for longer—longer than the pension system was designed to handle.

This spells trouble already, but there’s more bad news. As noted above, the global number of people over age 60 is projected to increase significantly in a few decades’ time, more than doubling between 2017 and 2050 (from 1.0 to 2.1 billion), whereas the 10-24 age cohort is expected to increase by a meager 200 million (from 1.8 to 2.0 billion) and the 25-59 cohort by 0.9 billion (from 3.4 to 4.3 billion) [1]. In particular, the number of people aged 85 and above is projected to grow more than threefold, from 137 million to 425 million, over the same span of time. Speaking of pensions alone, this is like having a piggy bank that a fast-growing number of people keeps drawing from and a slow-growing number of people puts money into. (As a side note, the number of children aged 0-9 is projected to stay the same between 2030 and 2050—that is, in twenty years’ time, we won’t have any more future contributors than we used to, while the people needing those contributions will have grown by 0.7 billion over the same 20 years.)

These two facts—the increase of life expectancy and the decrease of fertility rates—constitute what is known as population aging, which is pretty much the core of the problem; external factors that make matters worse, as some people maintain, are poor decision-making and unrealistic promises by politicians and, in general, the people managing pension systems. These might be the result of a lack of understanding of the problem or simply not genuinely caring about the consequences, but, in any case, making clear decisions on the actions to be taken is not an easy task, as tinkering with policies and rates relies on hard-to-predict information, such as the average lifespan of pensioners of a specific pension plan.

In addition, unrealistic investment expectations add to this growing pension crisis. The higher the assumed rate of future investment returns, the less funding is needed to have a “fully funded” pension plan. Currently, the high assumed rates reduce the apparent problem. For instance, the average rate of return on US state pension plans is assumed to be 7.5% per year; meanwhile, investment experts would say a return expectation of 6.5% is much more realistic, and if this assumption is correct, then even more pensions are in danger of running out, and others, previously thought to be only somewhat underfunded, become drastically underfunded. The result is that there is much talk of pension reforms, but the political unpopularity of touching retirement pensions or reducing the unrealistic promises causes continued procrastination.

The situation is depressing, in the U.S. and in several other countries. While U.S. Social Security is running low—with the average retiree having only 65.7% of their Social Security benefits remaining after out-of-pocket spending on medical premiums, for example—and expected to run out of money in 2034, Citigroup estimates that twenty OECD countries have unfunded or underfunded government pension liabilities for a mind-boggling total of $78 trillion; China, for example, is expected to run out of pension money shortly after the US, in 2035. In a September 2018 report, the National Institute on Retirement Security warned that the median retirement account balance among working-age Americans is zero and that nearly 60% of working-age Americans do not own any retirement account assets or pension plans. In the press release of the same report, the report’s author, Diane Oakley, stated that retirement is in peril for most working-class Americans, and according to an analysis by Mercer, in a World Economic Forum report, there’s plenty of reasons to believe her, as the US pension funding gap is currently growing at a breakneck rate of $3 trillion a year, reaching $137 trillion in 2050.

The icing on the cake: geriatrics

Pensions constitute quite a bit of money paid to people for around two decades until they die, and whether or not we can afford this, it would still be better if we weren’t forced to spend so much money in this way; even worse, we effectively throw even more money out the window by paying for geriatrics, something that most retirees are worried about.

Money spent on healthcare is generally money well spent, but only if it actually improves your health. The problem with traditional geriatrics is that it acts on the symptoms of age-related diseases rather than their causes. The diseases of aging are the result of a on complex interaction between different, concurrent processes of damage accumulation taking place throughout life; this means that, as a rule of thumb, the older you are, the more damage that you carry around. This means that any treatment aimed at mitigating age-related pathologies that does not act on the damage itself or its accumulation is destined to become progressively less effective, like shoveling water with a pitchfork out a lake while a river continually dumps more in.

Generally, geriatric treatments don’t directly affect the damage or its accumulation, so they cannot eliminate age-related diseases and become less and less useful as you age. Some kinds of geriatric treatments are actually geroprotectors—that is, they are able to interfere with the damage or the accumulation of damage and may help prevent diseases—but are often administered too late in the game, when pathologies have already manifested. Geriatrics is decisively not the best bang for the buck, even though it is presently better than nothing at all.

It doesn’t come cheap, either; according to a MEPS report, in 2003, the elderly constituted less than 25% of the Medicaid population but 26% of Medicaid spending; the report finds, unsurprisingly, that chronic conditions contribute to higher healthcare costs, and among the top five most costly conditions are diabetes and heart disease, two diseases typical of old age. Even less surprisingly, in 2002, people over 65 constituted 13% of the US population but accounted for 36% of total US personal health care expenses.

A 2004 study in Michigan found that per capita lifetime health expenditures were $316,000 for women and $268,700 for men (part of the discrepancy is to be attributed to women’s longer lifespans), of which one-third is incurred during middle age and more than another third is incurred after age 85 [6] for people fortunate enough to live that long. Again according to MEPS, in 2016, the average health spending in the US for people over the age of 65 was $11,316; for comparison, the sum total of all the other age cohorts from 0 to 64 was $13,587, only about $2,200 more. The cumulative spending for the 65+ cohort—that is, the average total of yearly expenditures for a US citizen at least 65 years old—was nearly $170,000. Again in 2016, people aged 65 and over accounted for 16% of the US population while constituting 36% of the total health spending.

report by Milken in 2014 found that, in 2003, about $1.3 trillion was thrown out the window in the US because of the treatment costs and lost productivity related to chronic diseases; the same report projects that, in 2023, the loss will amount to $4.2 trillion.

A 2018 study focusing on out-of-pocket spending for retirees found that the average household that turned 70 in 1992 will incur $122,000 in medical spending over the rest of their lives, and that the top 5% and 1% will incur $300,000 and $600,000, respectively [7]. This paper also found that Medicaid significantly helps the poorest households with their expenses, and it must be noted that, past a certain age, remaining lifetime healthcare costs stop growing and tend to stabilize (for no other reason that the people in question don’t have much life left during which they could spend money on healthcare), but whether the money spent on geriatrics, nursing homes, and so on is a lot or a little, or is spent by you personally or by the government, somebody is going to spend it on something that will not give your health and independence back and is not going to make your life much better. If we must spend it, we might as well do so on something that will actually restore your health.

To top it all, when you consider that American workers aren’t saving that much, a single major medical event past retirement could wipe however little they had set aside.

The costs of caring for older people don’t stop here; they affect their family caregivers as well. As highlightedby the National Center on Caregiving, taking care of a disabled family member may impact the caregiver financially, emotionally, and even health-wise; caregivers are more likely to suffer from stress and depression, are prone to illness themselves, and lose, on average, nearly $700,000 over their course of their lives. When you take into account population aging, it’s clear that this trend can only worsen and put more strain on society.

Life extension: friend or foe?

Now that we have a clearer idea about the potential pension crisis looming ahead and the costs of pensions and geriatrics, it’s time to discuss whether life extension would make the problem better or worse.

It all depends on how you understand life extension. The term per se is somewhat misleading, in that many people often imagine a longer, drawn-out old age in which ill health and the consequent medical expenses and pensions are extended accordingly, just as in the nightmares of social security planners. This is most definitely not what life extension is about, and it’s obvious that extending old age as it is right now would not be a solution to the problem of pensions (or even desirable for whatever other reason). Simply prolonging the duration of life without also prolonging the time spent in good health (if at all possible to a significant extent) wouldn’t solve any problem, and as a matter of fact, it would worsen existing ones; people would be sick for longer, thereby increasing the already exorbitant amount of suffering caused by aging, and they would need pensions and palliative care for longer, probably pushing our social security systems well over the edge. (As a side note, this is what geriatrics does: it delays the inevitable, prolonging the time spent in ill health by making you a wee bit less sick for a longer time.)

However, lifespan and healthspan—that is, the length of your life and the portion of life you spend in good health—aren’t causally disconnected; you don’t just drop dead because you’re 80 or 90 irrespective of how healthy you are. The reason we tend to die at around those ages is that our bodies accumulate different kinds of damage in a stochastic fashion; as time goes by, the odds of developing diseases or conditions that eventually become fatal go higher and higher, even though which specific condition will kill you depends a lot on your genetics, lifestyle, and personal history. The idea behind life extension isn’t to just “stretch” lifespan; rather, the idea is to extend healthspan, that is preserving young-adult-like good health well into your 80s or 90s, and the logical consequence of being perfectly healthy for longer is that you will also live for longer. Significant life extension only follows from significant healthspan extension, and it’s very unlikely that it could ever be otherwise.

Again, the fundamental reason that pensions exist is to economically support people who are no longer able to do it themselves. We need to have such a system in place if we don’t want to abandon older people to their fate. If life extension treatments take ill health and age-related disabilities out of the equation entirely, pensions as we know them today will no longer be needed, because you will be able to support yourself through your own work regardless of your age.

Some people might shudder at the thought of working at age 90, but we can’t help but wonder if they actually realize that the alternative is literally to get sicker and sicker and eventually die; if they prefer that to continuing to work, they probably have more of a problem with the specific line of work they’re in than life extension itself, and they should ask themselves whether they’d trade their health and life in their 40s if it meant that they could quit working earlier. There is, though a better angle to look at this from, and it’s what we mentioned before: retirement as financial independence. Being perfectly healthy for the whole of your life, however long it may be, does not mean you must work each and every moment of it. A longer life spent in good health may more easily allow you to attain sufficient financial independence to retire at least for a while. Unless you’re a billionaire, it’s unlikely that you’ll ever be able to retire for centuries in the current economic system; still, you might be able to enjoy a few years off, and then, say at age 100, celebrate your first century of life in perfect, youthful health by starting off an entirely new career with the same energy and vigor you had when you started the first one in your 20s.

Even if you don’t manage to save enough to retire by yourself, we should not forget that a pension system where people retire for a few years and then go back to work, producing wealth once more rather than just consuming it for decades, is the Holy Grail of social security; governments would have a much easier time paying for your pension for, say, five years, knowing that in five years, you’ll be making your own living again. Your insurance, or whoever pays for your medical expenses, would also be extremely happy to know that you have no chronic conditions to be taken care of—and most importantly, so would you. In a situation like this, a pension crisis is unlikely to happen because pensions would not be a necessity anymore. Even if it happened that pension funds ran dry for whatever reason and push came to shove, people would be able to support themselves through their own work—they’d have to postpone their retirement for some time, but that would be okay, because whatever their age they’d still be fully able-bodied.

This is the best-case scenario: a world where aging is under full medical control, just like most infectious diseases today. There’s also a possibility that this won’t come to pass as soon as we’d like and that we’ll achieve only partial control over aging, for example by successfully extending your healthspan by a few years. Even in this more modest scenario, the financial benefits would be enormous, with an estimated value of over $7 trillion over the course of fifty years [8], which is a benefit worth pursuing whether a pension crisis will happen or not.

Of course, it’s a good idea to sit down and attempt to do the math on a case-by-case basis to see for a fact which countries would effectively have significant economic incentives to endorse, and perhaps even financially support, rejuvenation therapies for their own citizens, but a 2018 report of the International Longevity Centre in the UK provides reasons to be rather optimistic. Titled Towards A Longevity Dividend, the report discusses the effects that life expectancy has on the productivity of developed nations, based on nearly 50 years of demographic and macroeconomic OECD data of 35 different countries; the results of this analysis can be summarized easily: life expectancy is positively correlated with a country’s productivity across a range of different measures. Indeed, the analysis found out that life expectancy seems to be even more important for a country’s productivity than the ratio of young (working) versus old (retired) people. The conclusions of the report’s author are that a longevity dividend, i.e. global economical benefits derived by an extension of healthy lifespans, may be there for society to reap.

We should also not forget that life experience is an asset; while work experience may easily become obsolete time and time again over the course of a very long lifespan, the wisdom and knowledge that older workers may have accumulated may make them excellent mentors and drivers of further progress and innovation.

Summing up

If life extension were simply the prolongation of the period of decrepitude at the end of life, it would make little sense to pursue it. It would do nothing to improve our health, and to add insult to injury, it would exacerbate an already uncertain global financial situation. However, life extension is not this; it’s a significant extension of our healthspan, from which an extension of lifespan logically follows, and as such, it has the potential not just to rid us of age-related diseases altogether but also to solve the financial problems caused by the necessity of pensions and geriatrics by mitigating or eliminating our need for them.

People working in social security can probably sleep more soundly if the undying elderly of their nightmares are replaced with rejuvenated, productive, and independent elderly whose health no longer depends on how long ago they were born.

About Nicola Bagalà

Nicola is a bit of a jack of all trades—a holder of an M.Sc. degree in mathematics; an amateur programmer; a hobbyist at novel writing, piano, and art; and, of course, a passionate life extensionist. After his interest in the science of undoing aging arose in 2011, he gradually shifted from quiet supporter to active advocate in 2015, first launching his advocacy blog Rejuvenaction before eventually joining LEAF. These years in the field sparked an interest in molecular biology, which he actively studies. Other subjects he loves to discuss to no end are cosmology, artificial intelligence, and many others—far too many for a currently normal lifespan, which is one of the reasons he’s into life extension.

About Michael Nuschke

For over three decades, Michael pursued a financial planning career and specialized in retirement income planning – how to ensure you don’t run out of money before you run out of life. Meanwhile, as an avid follower of science and technology, he realized that normal assumptions about retirement needed to be changed. Planning retirement gets tricky if you live well past age 100 in good health! Michael now calls himself a “Retirement Futurist” and is working to change how we think about retirement and life planning. He has contributed chapters for two books on the future and writes on the retirementsingularity.com blog. As a long-time meditator, he believes that meditation is a key discipline to enable clear thinking.

Anti-Aging Gene Therapy for Dogs Coming This Fall – Article by Steve Hill

Anti-Aging Gene Therapy for Dogs Coming This Fall – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by Steve Hill of the Life Extension Advocacy Foundation (LEAF) originally published on the LEAF site on May 8th, 2019.  The article brings attention to a new program that aligns with our mission of ending age-related diseases, which the U.S. Transhumanist Party supports as part of our policy goals.

~ Brent Reitze, Director of Publication, United States Transhumanist Party, May 10th, 2019


In an article last May, we covered how Rejuvenate Bio, a startup biotech company led by Professor George Church, was planning to reverse aging in dogs as a step towards bringing these therapies to us. Those plans are now starting to move forward with news of a trial launch in the fall later this year.

Developing anti-aging therapies in dogs is the first step

Back in 2015, the Church lab at Harvard began testing a variety of therapies focused on age reversal using CRISPR, a gene editing system that was much easier and faster to use than older techniques. Since then, Professor Church and his lab have conducted a myriad of experiments and gathered lots of data with which to plan future strategies for tackling aging.

Last year, we learned that Rejuvenate Bio had already conducted some initial studies with beagles and were planning to reverse aging using CRISPR gene therapy. The goal was to move these studies forward to a larger scale as a step towards bringing similar therapies to humans to prevent age-related diseases. Professor Church was so confident that his team would find a solution, he even suggested that he may be one of the first human volunteers once therapies finally reach people.

“Dogs are a market in and of themselves,” Church said during the 2018 Radical Wellness event in Boston. “It’s not just a big organism close to humans. It’s something that people will pay for, and the FDA process is much faster. We’ll do dog trials, and that’ll be a product, and that’ll pay for scaling up in human trials.”

Choosing to develop therapies for dogs helps pave the way for therapies that address the aging processes in humans and could support their approval, which would otherwise be much more challenging. Currently, if you were to tell the FDA that you want to increase lifespan in humans by 20 years, you would need to come back in 20-30 years with the data, which just isn’t practical.

However, if Rejuvenate Bio can produce robust data in dogs showing that some processes of aging have been reversed, it lends considerable justification for human trials. The company is also taking a different tack; instead of focusing on increasing lifespan, it is instead targeting an age-related disease common in dogs, which should be cured if age reversal occurs.

This is based on the concept that in order to treat age-related diseases and cure them, you need to target the root causes of those diseases, which are the underlying aging processes themselves. If Rejuvenate Bio is successful, this would lend additional supporting evidence that directly treating aging to prevent age-related diseases could also work in humans.

Gene therapy trial for mitral valve disease

Rejuvenate Bio has now announced that it will be launching a gene therapy trial in dogs during the fall this year to combat mitral valve disease (MVD), a condition commonly encountered in the Cavalier King Charles Spaniel breed and directly caused by the aging processes. The study will initially focus on this particular breed and expand to include other dogs with MVD as time passes.

We are developing a novel cardio-protective gene therapy to stop the progression of heart failure in dogs. As a part of the technical development, we will launch a study in dogs with Mitral Valve Disease (MVD) in the fall of 2019. This study will provide valuable information that will aid our effort to address MVD.

MVD is due to the failure of the mitral valve in the heart, a one-way valve between the two chambers of the heart that prevents the backflow of blood as it is pumped around the body. As aging occurs, the mitral valve can degenerate, which allows backflow to occur, leading to left atrial chamber enlargement, congestive heart failure, and, ultimately, death.

This gene therapy is focused on adding a new piece of DNA into the cells of the dogs in order to halt the buildup of fibrotic scar tissue in the heart, which is linked to the progression of MVD and other forms of heart failure. Fibrotic tissue is the result of imperfect repair, which occurs when a more complete repair is not possible due to a lack of replacement cells or high levels of inflammation.

The researchers are keen to point out that this new piece of DNA is not passed onto the offspring of the animal and cannot transfer between dogs. This is because the therapy does not alter the DNA in the germline cells, the cells that are involved in reproduction and passing on genetics to an organism’s offspring.

If you wish to enroll your Cavalier King Charles Spaniel in the trial coming this fall, then register your interest with Rejuvenate Bio to learn more about eligibility and how to apply.

Conclusion

This is a very exciting study and, as the company discusses on its project page, the therapy may also be useful for other heart conditions, such as dilated cardiomyopathy (DCM). If the initial results are successful, it would be highly likely that we could see more dog breeds included as well as other conditions, including DCM, added to the program.

We wish Professor Church and Rejuvenate Bio every success, as this forms the basis for potentially moving such therapies into human trials more quickly as well as potentially helping our furry friends to live longer, healthier lives as well. We love our pets, and it is only logical that we should want the same healthy and longer lives for them as we do for ourselves, and the process for them is the same for us: new medical innovations that target the aging processes directly in order to end age-related diseases.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Andrés Grases Interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II on Transhumanism and the Transition to the Next Technological Era

Andrés Grases Interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II on Transhumanism and the Transition to the Next Technological Era

logo_bgGennady Stolyarov II
Andrés Grases


Andrés Grases, the publisher of the Transhuman Plus website (http://transhumanplus.com/) interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II at RAAD Fest 2018 in San Diego, CA, on September 23, 2018. During the course of this conversation, both the contemporary state of transhumanist politics and future directions are covered – along with the challenges to reforming the educational system, the need to create open access to academic works, the manner in which the transition toward the next era of technologies will occur, the meaning of transhumanism and its applications in the proximate future – including promising advances that we can expect to see during the next several years.

Watch the video here.

Become a member of the U.S. Transhumanist Party for free, no matter where you reside. Apply online here in less than a minute.

The Need for Unity and Stability in Transhumanism – Article by Arin Vahanian

The Need for Unity and Stability in Transhumanism – Article by Arin Vahanian

 

Arin Vahanian


Although Transhumanism is heavily inspired by (and also inspires) advancements in science and technology, I believe the movement could also benefit from implementing cultural aspects; in particular, those from China.

This became very clear to me not just after living in China, but also after reading the works of Dr. Martin Jacques, British professor and journalist, who is, in my mind, one of the most knowledgeable Westerners when it comes to Chinese culture and history.

Specifically, in his writings and public appearances, Dr. Jacques has elucidated various aspects of Chinese culture, two of which I think are important for Transhumanism to consider: unity and stability. I shall cover each one briefly here, and explain how our movement would benefit.

Although the Transhumanist movement is rather decentralized, and I believe in keeping it this way, we most definitely need unity, especially in regard to our values and objectives. To this end, the U.S. Transhumanist Party has published its values on its Web site, which include but are not limited to: eradicating disease; the cultivation of science, technology, and reason; support of all emerging technologies that improve the human condition; life extension; reversing aging; tolerance and inclusivity of all individuals, and so forth. I believe every Transhumanist would support these values, all of which are noble, and all of which would most certainly contribute to having a better, more prosperous, and safer world.

Any organization, family, company, group, team, or political party, for that matter, needs unity in order to stay together and fulfill its goals and aspirations. Conversely, lack of unity may lead to chaos, discordance, and dysfunction. According to Dr. Jacques, the primary political goal for the Chinese is unity. Indeed, there would have been no way for Mandarin to become the national language, nor any way for the dizzying progress (whether it is technological, societal, or economic) we have seen in the country to have occurred, without unity. Please note that I am not advocating for a change in the political process anywhere else, nor am I suggesting that other countries adopt the same political or economic system as China. I am simply stating that being unified in our goals and values is incredibly important if we wish to fulfill these goals and proliferate our values.

Just as the Chinese look at themselves as Chinese, so we must look at ourselves as Transhumanists. However, there is one major difference; while not everyone can be Chinese, anyone can be Transhumanist. Our movement is inclusive to all individuals, regardless of race, gender, class, religion, and sexual preference. Therefore, I believe that we can be unified while also being open, tolerant, and accepting of all humans.

This leads me to my next point, which is stability. There is no question that in China, as well as other Asian countries, stability is paramount. After all, an unstable society cannot work together to fulfill its objectives and protect its values. Fortunately, we have stability in the Transhumanist movement in the areas of political leadership (Zoltan Istvan, Gennady Stolyarov II), life extension (Max More, Keith Comito), aging (Aubrey de Grey), and more. What’s fascinating is that the movement is so diverse and broad, and the areas for improvement on Earth so plentiful, that we have had individuals naturally dedicate themselves to causes they deemed worthy. This has contributed to stability in the sense that people are working on what they are passionate about, and these same people have, as a result, provided stable leadership in these areas. We must ensure that this stability continues, and that we help advance the causes we believe in by promoting them on social media and mass media. We must also support those who are bravely and selflessly dedicating their lives to helping humanity move forward. All of these actions will contribute to further stabilizing the movement and what it stands for.

Additionally, we must maintain stability in our relationships with each other, as well as the messages that we communicate to others. No matter how small or large a role we each take on, our mandate as Transhumanists is to push for reforms that will improve the human condition for as many people as possible, with as much beneficial impact as possible. In doing so, we must communicate our message that science, technology, and rational discourse should be used for efforts such as curing disease, increasing human longevity, alleviating poverty, and battling climate change.

While we are completely opposed to the proliferation of nuclear weapons, we are completely open to tolerance and inclusivity of individuals, and offer assistance to those who may have been shunned by the system, either due to disability or the desire to challenge society so that we may be better humans. We are an organization that values and promotes pacifism, and by doing so, we are creating a more stable society, and world.

So my call to action today is this. Rather than argue whether a certain economic system is better than another for Transhumanism, we should focus on our values and goals, thereby fulfilling our mission, and be supportive of whichever economic system best helps get that done, whichever country we happen to live in. Different economic systems work in different countries, and we should not be dogmatic, but rather, flexible and solution-oriented.

Additionally, rather than debate one another, we must instead discuss and cooperate, again, with the intent of pushing forward our goals. Debating takes valuable time and resources away from achieving our goals, and the time that is spent on needless arguments could be spent on finding solutions to challenges that threaten humanity. While it is perfectly acceptable and in fact, desirable, to have differences of opinion, we should use these differences to collaborate and help develop solutions to the problems we humans face. We are finally getting more traction in social media, mass media, and in various communities and countries all over the world, and so we should take advantage of these trends to further spread our messages of peace, increased health and longevity, and technological innovation that will benefit humanity.

One of the challenges the Transhumanism movement currently faces is an inaccurate and unfair perception that it is a niche movement, unable to appeal to most people, and the product of wealthy technophiles in Silicon Valley. However, nothing could be further from the truth. Among our ranks are people of all nationalities, social statuses, races, genders, and religions, and we are the only movement that supports morphological freedom. Further, we are dedicated to goals such as alleviating poverty, curing disease, eliminating nuclear weapons, spreading peace, and using science and technology to make life better for all humans, not just a privileged few. Surely these are values that most, if not all humans, could stand behind. Based on this, it is quite clear that Transhumanism is most certainly not a niche movement, and that it is one of the most progressive and inclusive movements the world has ever seen.

Therefore, the best way we can promote our messages and fulfill our objectives is by being unified in our purpose, mission, and values, and be stable in our leadership, approach, and relationships. Let’s not do our detractors’ work for them by being splintered and divided, nor become detractors ourselves. Let us coalesce for the betterment of humanity, and turn our detractors into friends, supporters, and partners. Indeed, the future of the world, and that of humanity, depends on it.

Arin Vahanian is Director of Marketing for the U.S. Transhumanist Party.

Choose Your Own Story – by Nicola Bagalà

Choose Your Own Story – by Nicola Bagalà

Nicola Bagalà


Editor’s Note: In this set of short stories originally published by our allies at the Life Extension Advocacy Foundation (LEAF), Nicola Bagalà illustrates  through convincing scenarios of possible futures why we should take seriously research and activism into rejuvenation biotechnology. It may make the difference between our own survival and flourishing into the indefinite future, or the painful suffering and demise that currently accompany old age.

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, July 30, 2018


Today, I would like to tell you two short stories describing what your far future might look like, depending on the choices that you—though not only you—will make in the near future. Feel free to leave a comment to let others know which one you’d rather have as your real future.

Story 1: A day in 2140

The blinds in your bedroom slowly whirr open, as a gentle melody gradually fills the environment. Ferdinand—your AI assistant, to whom you decided to give a far less extravagant name than most other people do—informs you that it’s 7:30, your bath is ready, and so will be your usual breakfast once you’re done in the bathroom. Getting up that early is never too easy, but your morning walk in the park is always worth it, because it puts you in a good mood.

As you enter the bathroom, you step into the health scanner, and, after a few seconds, a couple of charts and several biomarkers show up on the display—the final report says that you’re a perfectly healthy 137-year-old whose biological age is about 26. It’d be enough by itself, but you think the charts and the data look cool; Ferdinand knows that.

You’ve got one of those awesome bathrooms with HyperReal WallScreens—well, nearly everyone does anyway—so today you’re taking your bath in the rainforest. As you enjoy your hydromassage, you’re listening to the latest news; your heart almost skips a beat when you hear that the Stephen Hawking Deep Space Telescope, the one that NASA and the African Space Agency sent pretty much to the edge of the solar system, has finally confirmed earlier observations: JSS “Jessie” 431 c, an exoplanet 95 light-years away, harbors multicellular life. They’d been chasing “Jessie” for a while, and now the chase is over; it’s an unprecedented discovery, and while it took surprisingly long to finally get this data, this is a world-changing breakthrough, and it leaves you yelling and splashing around in joy embarrassingly loudly. As you quickly get out of the tub, you imagine that all the geeks at work won’t be talking about anything else.

Your breakfast, freshly out of your molecular assembler, is as delicious and tailored to your specific nutritional needs as Ferdinand got you used to, but you’re too hyped today to spend too much time eating. Ferdinand casts a virtual, disapproving glance at you as you quickly gobble your food up and leave the flat. Your usual walk is cancelled as well, you think as you get into the elevator, because you’re too eager to discuss the news at work. As Ferdinand leaves room for Alice—the building’s AI janitor—you look through the glass walls of the cabin, gaining inspiration from the several other elegant skyscrapers towering over your beautiful city. After a quick descent from the 87th floor, you’re finally on the ground and ready for the commute to work—a quick trip of about 400 kilometers, which, when you were in your 20s for real, would’ve been anything but quick.

At the time, the world was so very different, you think to yourself. Take work, for example: your life depended on it, in pretty much the literal sense of the word. Nowadays, although the word “work” stuck, it is just something you really enjoy doing and you’re good at, and people look back at the whole “having to earn a living” idea in pretty much the same way as they looked at hunter-gatherer tribes when you were a child. It’s unnerving to think that you could’ve missed all of this by a hair’s breadth; when you were in your early 20s, the social movement for the development of rejuvenation biotechnologies really started to pick up, and therapies eventually followed suit. If it hadn’t—and that might well have been—right now you’d be six feet under, just like your poor grandma. She’d have loved the world today, your father always says.

Anyway, there’s no time to get melancholic now; another great day awaits you.

Story 2: A day in 2078

If this story had the same year as the previous one, it’d be very short: you’re dead, and you’ve long been such. The end. However, that’s not how it’s titled, so it is going to be a little longer than that. Whether that’s better or not, I’ll leave up to you to decide.

You wake up in your hospital bed to the beeping coming from multiple monitors and sensors, which by now have become your most consistent companions. It’s not even morning: you fell asleep in the middle of the afternoon, and now that you think about it, some of your family was there with you. Probably, as you fell asleep, they decided it was best to let you rest.

Not that you’re that much awake, anyway. You feel barely conscious, and most of what you can feel is either pain or tiredness. Up until a month or two ago, you could still sort of manage with some difficulty, although with the help of your caregiver or your children, but then everything changed. You’ve been waking up in the same hospital bed ever since you passed out that day, and one of the first things you heard when you woke up right after they brought you in was that, at 92 years old, you’re lucky to be still alive.

You’d like to know what time it is, but you can’t quite make out the clock on the wall nor any of the screens around you. You could ask the computer in the room, if you had any breath left, but you don’t. If nothing else, it probably has alerted the doctors that you’re awake, and maybe someone will turn up soon. Spending energy to push the damn button doesn’t seem worth it, what’s the point, anyway, you wonder—today might well be your last day, and given the outlook, it’d be as good a day to go as any.

That’s too bad, though, you think, saddened. You’d really have wanted to see your great-grandkids grow up, and all in all, the world has surprised you, turning out much better than you expected. Not perfect, granted, but you’re genuinely curious to know how things will change in the coming decades, with all these advancements in technology and science—and the overall political situation looks okay, too. Well, looks like you’ll be taking your curiosity to the grave with you, because these advancements didn’t happen quite everywhere in science, nor did the bureaucrats do much to make them happen. Tough luck.

Bitterly, you think this was at least a little bit your fault too. You didn’t do much to make them happen either. When you were in your early thirties, there was a lot of talk about rejuvenation biotechnology, and the talk intensified somewhat by your late thirties, but the whole thing never really saw the light of day. Oh, you tell yourself, it’ll happen eventually, but not any time soon. It certainly didn’t happen in time to spare yourself what you’re going through right now—thankfully, it’s almost over.

Back in the day, you were in the “unsure” camp, tending to “best not to mess with nature.” In hindsight, you’re not so sure you actually agreed with that view; possibly, you only said so because so many other people said the same and you didn’t feel like being one of those fruitcakes who wanted to change everything, or something like that—what the heck, that was 60 years ago and the memories are foggy. You do remember, though, that when you saw your own parents go through an ordeal very similar to yours, some thirty years ago, the thought that you might have misjudged the “fruitcakes” crossed your mind, but it was already too late.

Unfortunately, by then, populist discourse appealing to the cycle of life, a bunch of other, supposedly more important issues, and “the future of our children” had won over the crowd, and rejuvenation research had taken a back seat, making way for better services for the elderly instead; they’re not bad, but maybe, if a choice was available between better machines to take you to the toilet and drugs that kept you able to walk there on your own, the latter might have been preferable.

The future for your great-grandchildren is similarly rosy, as they get to watch their own parents and grandparents turn into almost-vegetables and then die, not to mention the financial burden—not just on individual families, but the world as well. With so many old and dependent people, and fewer and fewer young people, the economy doesn’t look so okay. The way they’re going about this is by offering financial incentives for families with kids, which, coming from the very same people who opposed rejuvenation for fear of overpopulation among other things, is quite ironic.

Maybe, you tell yourself, you should’ve listened. Maybe you should have taken the whole issue more seriously and helped the early advocates somehow, rather than having dismissed the idea of rejuvenation. Maybe, if you had helped, and if others had too, it’ll have happened in time to save you, or at least your children—they’re in their sixties and seventies now, and if rejuvenation didn’t happen in the past sixty years, despite the initial wave of enthusiasm, you can bet that it isn’t going to happen in the next twenty years when nearly nobody cares.

You turn your head slightly towards the door. Nothing. No one’s coming, but then again, you’ve only been awake for ten minutes tops, and the doctors have got plenty of other geriatric patients in this wing. Your eyelids are becoming heavy again, and as you won’t accomplish much by staying awake anyway, you decide to let them go down. Who knows if they’ll open again.

Both of these stories are fictional, though the first one contains more fiction than the second, because it describes a future that might or might not come to be. The first story is perhaps overly optimistic and even a tad too Star Trek-ish for your taste, but it’s just my happy story—you are free to replace it with whatever positive future you’d like to see. It’s just a possible scenario, and for all we know, the future might be nothing like that and more like a dystopia. It’s hard to tell for a fact.

However, the second story contains much more reality than the first, because it’s pretty much what it means to be in your 90s these days; depending on a number of factors, even being in your 70s and 80s can be not much better, even if you’re not bedridden. Unless we do something about it today, a story similar to this will be our story—your story—too, just like stories of infectious diseases killing millions would’ve still been very much current even today if we hadn’t done anything to change those stories before they could unfold.

I’ve already chosen my favorite version of the story a long time ago. The question is, which one is yours?

About Nicola Bagalà

Nicola Bagalà has been an enthusiastic supporter and advocate of rejuvenation science since 2011. Although his preferred approach to treating age related diseases is Aubrey de Grey’s suggested SENS platform, he is very interested in any other potential approach as well. In 2015, he launched the blog Rejuvenaction to advocate for rejuvenation and to answer common concerns that generally come with the prospect of vastly extended healthy lifespans. Originally a mathematician graduated from Helsinki University, his scientific interests range from cosmology to AI, from drawing and writing to music, and he always complains he doesn’t have enough time to dedicate to all of them which is one of the reasons he’s into life extension. He’s also a computer programmer and web developer. All the years spent learning about the science of rejuvenation have sparked his interest in biology, in which he’s planning to get a university degree.

Interview with Dr. Aubrey de Grey by Yuri Deigin

Interview with Dr. Aubrey de Grey by Yuri Deigin

logo_bg

Yuri Deigin
Aubrey de Grey


Editor’s Note: The U.S. Transhumanist Party is pleased to publish this in-depth interview by Yuri Deigin of Dr. Aubrey de Grey, the U.S. Transhumanist Party’s Anti-Aging Advisor. Herein Dr. de Grey offers original, in-depth insights regarding the current state of research and public opinion regarding the pursuit of advances in rejuvenation biotechnology that will hopefully achieve significant life extension, one of the U.S. Transhumanist Party’s Core Ideals, within our lifetimes.  This interview was originally published in the Russian language here. The English-language version was first published by one of the U.S. Transhumanist Party’s Allied Organizations, the Life Extension Advocacy Foundation (LEAF), here

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, July 29, 2018

Note from the Life Extension Advocacy Foundation (LEAF): Today we have an interview with Dr. Aubrey de Grey from the SENS Research Foundation. This interview conducted by Yuri Deigin, CEO at Youthereum Genetics, was originally published in Russian language and he has kindly translated it into English so our audience can enjoy it, too.


Yuri: Aubrey, thank you very much for agreeing to this interview. Why don’t we dive right in? I am sure everybody asks you this: how and when did you become interested in aging, and when did you decide to make it your life’s mission to defeat it?

Aubrey de Grey: I became interested in aging and decided to work on it in my late 20s, so, in the early 1990s. The reason I became interested was because that was when I discovered that other biologists were almost all not interested in it. They did not think that aging was a particularly important or interesting question. I had always assumed, throughout my whole life, that aging was obviously the world’s most important problem. I thought that people who understood biology would be working on it really hard. Then, I discovered that wasn’t true and that hardly any biologists were working on it. The ones that were weren’t doing it very well, not very productively as far as I could see. I thought I’d better have a go myself, so I switched fields from my previous research area, which was artificial intelligence.

Yuri: By the way, do you think there are disproportionately many people from computer science in aging research these days?

Aubrey de Grey: There are a lot, and there are lots of people who are supporting it. Most of our supporters are, in one way or another, people from computer science or from mathematics, engineering, or physics. I think the reason why that has happened is actually very similar to the reason why I was able to make an important contribution to this field.

I think that people with that kind of background, that kind of training, find it much easier to understand how we should be thinking about aging: as an engineering problem. First of all, we must recognize that it is a problem, and then we must recognize that it is a problem that we could solve with technology. This is something that most people find very alien, very difficult to understand, but engineers seem to get it more easily.

Yuri: So do you think that people who don’t have such a background, this way of thinking, have a chance of understanding the importance of this problem, or are they better off letting people with an engineering mindset figure it out?

Aubrey de Grey: Well, of course, there is always an overlap. The reason I spend so much time doing interviews and running around the world giving talks is precisely in order to help people, for whom this is not obvious, to think about these things. For any new idea or any new way of thinking, there are always people who understand it first and who then communicate that knowledge to other people.

Yuri: Right. And you have been running around giving talks for a very long time, as I understand. It’s been, what, twenty years?

Aubrey de Grey: Well, at least 15 years that I’ve been doing a lot of it.

Yuri: So between the time in your twenties, when you realized that aging is not something that’s being adequately covered by biologists, and the time when you decided to have a go at it yourself, how many years have passed? And can you give a bit more background on when you founded SENS and what SENS is?

Aubrey de Grey: Sure! The year in which I switched fields properly is probably 1995. For the next five years, I was basically just learning. I was going to all the conferences, getting to know the right people, leaders in the field. Learning a lot of what was known and doing a huge amount of reading, of course. The big breakthrough came in the summer of 2000 when I realized that comprehensive damage repair was a much more promising option then what people had been doing before. Since then, it has been a matter of persuading people of that.

There were a few years when I was just ignored and people thought I was crazy and didn’t think I made any sense. Then, gradually, people realized that what I was saying was not necessarily crazy. Some people found it threatening, so in the mid-2000s, I had a fair amount of battles to fight within academia. That’s normal; that’s what happens with any radical new idea that is actually right, so that happened for a while. This decade, it’s been rather easier. We founded the SENS Foundation; we’ve started getting enough donations into the SENS Foundation to be able to do our own research, both within our own facilities as well as funding research at universities and institutes. Gradually, this research had moved far along enough that we could publish initial results. Over the past two or three years, we’ve been able to spin off a bunch of companies that we have transferred technology to so that they can actually attract money from investors.

There are, of course, an awful lot of people out there who believe in what we are doing, but they fundamentally don’t like charities; they don’t like to give money away. They have been waiting for the point when these projects move far enough ahead that they are investable, and that’s resulting in much more money flowing into these areas.

Yuri: This is a good point you bring up – that a lot of wealthy people for some reason aren’t prepared to spend money on fundamental research on aging but somehow desire a financial return on their investments in this field. Do you know why that is? Why can’t they realize that in their position, it is much more rational to try to convert their wealth into something much more valuable that they cannot yet ever get back, which is years of healthy life. Why do they try to also make money on this research?

Aubrey de Grey: Well, it’s not really a rational decision, and it’s different for every individual, whether it’s for that reason or any other. Let me first say that it actually seems less of a problem in Russia. Our single biggest donor at the moment is Vitalik Buterin, the guy who created Ethereum, who is a Canadian of Russian heritage. Another major donor of ours is a guy named Michael Antonov, one of the co-founders of Oculus. I think maybe Russians have less of a problem with this. However, in general, the kind of people who have a lot of money and who are also visionary enough and understand technology enough, they tend to be the kind of people who made their money by doing certain things; they got it through the capitalist system. So, those kinds of people are inherently biased in favor of that system and against philanthropy. Then, of course, there are many other reasons. There are some people who won’t give us money because they don’t think it’s a good idea to defeat aging. There are plenty of people who want to give us money, but their wives think it’s crazy. I am not kidding! There are at least a couple of our major verbal supporters who I know for a fact that that’s why they are not giving us significant amounts of money. Another reason, I think, is that some people just have overly big egos, so they think they can do better than us even when they can’t.

Yuri: Let me probe you a little bit more on this. You brought up wealthy Russians and people who think they can have a go at aging themselves. Would Sergey Brin qualify as one of those people who decided they know better and founded their own company, Calico, for precisely this reason?

Aubrey de Grey: Yeah, I had a funny feeling you might ask me about that. I have a very low opinion of Calico. The fundamental reason for this is because of Larry and Sergey. In fairness to Sergey, my understanding is that Calico is mainly a Larry project, or at least more so than a Sergey project. Of course, they are both on the Board of Directors, and they both share the responsibility. At the end of the day, Calico is a catastrophe, and it’s their fault. They just created it wrongly.

They’ve known me for fifteen years; they could easily have told me, “Listen. We don’t like charity. We want to create a company, and we want you to run it,” and I would’ve said “No problem!” and they knew that. Instead, they decided to be more traditional about this. I don’t know why. Maybe they don’t like people who have beards.

The fact is that they made an absolute catastrophe of it. They started out reasonably sensibly by hiring Art Levinson, the world’s best biotech CEO, but what they didn’t do was tell him what to do next. They gave him a job to cure aging, and he doesn’t have the slightest idea how to cure aging, and he knows that he doesn’t have the slightest idea. So, he hired someone who he thought would have an idea how to do it and made him Chief Science Officer. Unfortunately, he didn’t know how to make that decision either, so he hired completely the wrong person. He hired a completely inveterate basic scientist, David Botstein, who is a fantastic scientist but who doesn’t understand technology. In fact, he went on record saying that he doesn’t have a translational bone in his body. You don’t get that sort of person to run an outfit that’s supposed to be solving a technological problem. Sure enough, they are doing fantastic research that will understand aging better and better as time goes on over the next century, but they will never, ever, if they follow their current strategy, actually make any kind of difference in how long people can stay healthy and, therefore, how long they can stay alive.

Yuri: Why do so few people have a sense of urgency that we need to do everything possible to combat aging within our lifetimes and not centuries to follow?

Aubrey de Grey: There are two answers to that. The David Botstein answer, the Calico answer, is that they just don’t understand the idea of knowing enough. People who work on basic science understand how to find things out, but that’s all they understand. For them, the best questions to work on are the questions whose answers will simply create new questions. Their purpose in life is to create new questions rather than to use the answers for a humanitarian benefit. They don’t object to humanitarian benefit, but they regard it as not their problem. You can’t change that. Botstein is a fantastic scientist, but he’s in the wrong job.

The other part of your question, why people, in general, do not regard aging with a sense of urgency, has a different answer. People weigh up the desirability and the feasibility. Remember that everyone has been brought up to believe that aging is inevitable, I mean completely inevitable in the sense that stopping it would be like creating perpetual motion. If the probability of doing something about this thing is zero, then the desirability doesn’t matter anymore. So, under that assumption, we really ought to put it out of our minds and get on with our miserably short lives. That’s all we can do.

Yuri: So it’s a case of learned helplessness?

Aubrey de Grey: Yes, exactly, it is learned helplessness, and it’s a perfectly reasonable, rational thing to be thinking until a plan comes along that can actually solve the problem: a plan that demonstrates that we actually might be within striking distance of genuinely solving the problem. That only happened quite recently. Of course, I have a huge mountain to climb to persuade people that we have crossed the boundary from this being just a recreational, exploratory field to it being a technological, translational field.

Yuri: Have you had success in the past fifteen years that you’ve been climbing this mountain; have you seen that the public’s perception has greatly improved?

Aubrey de Grey: Absolutely. Things have got hugely easier. I mean, there is a huge amount of the mountain still to climb, but we have climbed a hell of a lot of it. Just the nature of a conversation, the kinds of people who want to hear about this. The way in which credentialed scientists with reputations that they need to protect are willing to embrace this. We could not conceivably have created the scientific advisory board that we have now fifteen or even ten years ago. There are thirty people there who are all world-leading luminaries in their fields, and they are all signed up very explicitly to the ideas that comprehensive damage repair is a thing and that it actually has a good chance of genuinely defeating aging. So, I’ve won the scientific argument.

People are even reinventing the whole idea of comprehensive damage repair and pretending it’s a new idea. Five years ago, there was a paper called “The Hallmarks of Aging” published by five very senior professors in Europe. That paper is saying pretty much exactly what I said eleven years before it. The key difference is that unlike my work, this work is being noticed. In fact, it’s been more than noticed. It’s become the definition of what’s useful work to do. This one paper that was only published 5 years ago has been cited more than 2,000 times already. There’s no question that it’s going to be, by far, the most highly cited paper in the whole of the biology of aging this decade, and it has the same ideas that I put forward the previous decade. So that’s fantastic. I’d like to have more credit, but I really don’t care about that; what I care about is that the idea is now in the mainstream.

Yuri: You mentioned your plan for comprehensive damage repair; could you elaborate a little bit more on what the plan actually is?

Aubrey de Grey: Sure. The idea is to emulate what a mechanic would do to maintain a car. We know that this works; there are cars over a hundred years old that are still running and are doing so just as well as when they were built. We know that they are not doing that because they were designed to last that long; they were probably designed to last only ten years. They’ve vastly exceeded their warranty period, and they’ve done so because of comprehensive damage repair.

The only reason that we can’t do this to the human body already is that the human body has more complexity and more types of damage. However, it’s a manageable amount of complexity. In particular, the big thing that led me through to this route was when I realized back in the year 2000 that we could classify all of the types of damage that the body accumulates into seven major categories, for each of which there’s a generic approach to fixing it.

For example, one of the categories is cell loss, which is when cells are dying and not being automatically replaced by the division of other cells. The repair, of course, is stem cell therapy. We simply put cells into the body that have been pre-programmed into a state where they know what to do to divide and transform themselves into replacements for the cells that the body is not replacing on its own. That’s just one of the seven types of damage that I enumerated, and, of course, that direction is very well advanced. We have hardly ever done any work in stem cells because we didn’t need to; other people are doing all of the work that’s necessary.

The other six categories are more neglected; they are in an earlier stage. That’s why we created the SENS Foundation to push them forward. We’ve been very successful. A number of those things have reached a point where we could actually create a startup company and transfer technology into it, so it would attract investment from the kinds of people I was mentioning earlier who don’t like to give money away.

Yuri: So you’ve created several startups, could you elaborate on the ones that have the most potential?

Aubrey de Grey: They’re all doing pretty well. Let me just focus on one as an illustration: Ichor Therapeutics. Ichor is all about macular degeneration, which is, of course, the number one cause of blindness in the elderly. The category in SENS that it comes under is the accumulation of molecular waste products inside cells. They accumulate in different cells in many different ways. It’s a side effect of their normal operation. Different cells accumulate different types of waste products. One of them is a byproduct of vitamin A that is created in the eye as a side effect of the chemistry of vision, and it poisons cells at the back of the eye called retinal pigmented epithelial cells.

What we’ve done is identify enzymes in bacteria that are able to break down this toxic waste product. If they can break it down, the waste product no longer accumulates. We have identified the genes for these enzymes, and we’ve been able to incorporate them into human cells in such a way that they still work. Ichor is pursuing that, and it will probably soon start clinical trials to pursue this as a cure for macular degeneration later this year. This is dry macular degeneration, the major form in the elderly.

Yuri: Could you tell us about some other startups that you’ve spun out from SENS?

Aubrey de Grey: Sure. Ichor was part of LysoSENS. Another one that we’ve spun off is called AmyloSENS. We’ve got a problem of waste products that accumulate not inside the cells but in the spaces between the cells. In theory, those waste products are easier to get rid of, because they’re inherently easier to break down. The way we do it is by actually getting cells to swallow this stuff, internalize it, and then break it down. There are various ways to trick the immune system into doing that. In the case of Alzheimer’s, this was done some years ago, and it’s already working in clinical trials.

Our focus has been on other types of waste products that are similar to the plaques in Alzheimer’s disease, but they consist of different proteins, and they occur in different tissues. We’ve been able to fund a group in Texas that was able to create some antibodies that could break down the extracellular garbage which is actually the number one killer for really old people, people over the age of 110. That’s now been turned into a company.

Another example is a company that’s being run by the person who used to be our Chief Operating Officer. It’s a company focused on organ preservation. It’s well-known that there’s a huge shortage of organs for transplants. Many thousands of people die every year on waiting lists, just waiting for an organ that is sufficiently immunocompatible for them and that happens to be donated by somebody who dies really nearby. That is a requirement for that organ to be given to the recipient fast enough before it breaks down. We want to solve that transport problem and create whole banks of organs with a variety of immunological profiles. In order to do that, we need to be able to freeze them, but in order to freeze them, we need to develop ways that will not cause damage to the organ in the process of freezing. The company we spun out has got a wonderful new technology that is really good at that.

Yuri: Is that Arigos? The company that uses helium persufflation for cryopreservation?

Aubrey de Grey: That’s the one. You are very well-informed!

Yuri: Can you comment on Human Regeneration Biotechnologies?

Aubrey de Grey: That was our first spin-off, actually. It’s now got a shorter name. It’s called Human Bio, and it’s run and funded by a guy named Jason Hope, who was, for some time, one of our most major donors. He’s now focusing his funding on the company. It was initially created to do something very similar to what we’re doing with Ichor in macular degeneration. In that case, it was for atherosclerosis. The target was not this byproduct of vitamin A; instead, it was oxidized cholesterol, and they have kind of run into the sand a little bit on that. We’re trying to reactivate it right now, but they’ve got other interests as well. They’re working on senolytics, drugs that will kill senescent cells. They are potentially going to be quite a big player in a number of different areas at SENS. At the moment, they are a bit stealthy; they don’t need money, because they are funded by this wealthy guy. They are not going around telling everyone all that much about what they are doing, the way that most of these companies are.

Yuri: What about enzymes that are meant to break glucosepane crosslinks? Is there a startup for that?

Aubrey de Grey: We have funded research on glucosepane at Yale University. We’ve funded that for about 4-5 years now. They had a fantastic publication 2 years ago, where they made a huge breakthrough in this area. Essentially, they first had to be able to make glucosepane in large quantities without a high expense. That was published in Science; that’s our highest-profile publication in any area. It was important because it allowed them to proceed with obvious things, such as identifying enzymes that could break it. That was very successful: they have identified half a dozen enzymes that seem to be promising. For a couple of those enzymes, there’s a pretty good understanding of how they work. Now is the right time to create a company out of that, and that’s exactly what’s happening. That company is a month or two from being incorporated, and its funding is established.

Yuri: Great, so we’ll be on the lookout for an announcement for that company to be spun off.

Aubrey de Grey: It’s going to be called Revel.

Yuri: Ah, let’s hope we can one day revel in its accomplishments.

Aubrey de Grey: That’s right!

Yuri: We might have gotten a bit too deep into science for a casual reader. Maybe we can step back and you could elaborate on what you think actually causes aging? I know there are different schools of thought on that in the scientific community so maybe you can share your perspective?

Aubrey de Grey: I get rather sick of this question, actually. You know, there’s nothing that “causes” aging. What causes the aging of a car? You wouldn’t ask that question: you know that that’s a stupid question. All I really want to tell you is that the aging of a living organism is no different fundamentally than the aging of an inanimate machine like a car or an airplane. Therefore, questions like “What causes aging?” are no more sensible for a living organism than they are for a car.

Yuri: If the underlying causes of aging are the same for all organisms, why do you think there’s such a big difference in lifespan between different species: some live for just a few months, while others for centuries?

Aubrey de Grey: The analogy with inanimate machines like cars works perfectly well there too. Some cars are designed to last 50 years, like Land Rovers, for example, but most cars are only designed to last 10 years. It’s just the same for living organisms. Some living organisms have evolved to age more slowly. A perfectly good question is what causes evolution to create this disparity? Some species in a particular ecological niche, say, at the top of the food chain have an evolutionary imperative to age slowly, whereas species that get eaten a lot don’t need to have good anti-aging defenses built into them. That’s really the basis for why there is this variation in the rate of aging across the living world.

Yuri: The more interesting question is when will humanity actually conquer aging?

Aubrey de Grey: It all depends on how rapidly research goes, and that depends on money. Which is why when people ask me, “What can I do today to maximize my chances of living healthy and for a long time?” I tell them to write me a large check. It’s the only thing one can do right now. The situation right now is that everything we have today – no matter how many books are written about this or that diet or whatever – is that basically, we have nothing over and above just doing what your mother told you: in other words, not smoking, not getting seriously overweight, and having a balanced diet. If you adhere to the obvious stuff, you are doing pretty much everything that we can do today. The additional amount that you can get from just any kind of supplement regime, diet, or whatever is tiny. The thing to do is hasten the arrival of therapy for the betterment of what we have today. That’s where the check comes in.

Yuri: Some people probably couldn’t afford to write a sizable check; maybe they can do something else?

Aubrey de Grey: What I always say in relation to that is that the poorer you are, the more people you know who are richer than you. Therefore, the less you can do in terms of writing your own check, the more you can do in terms of persuading other people to write checks.

Yuri: So it’s activism, being vocal about aging research?

Aubrey de Grey: Absolutely. It’s activism and advocacy: it’s all about spreading the word and raising the level of people’s understanding of the fact that aging is the world’s biggest problem.

Yuri: Do you see any increase in funding for longevity research over the past 10 years?

Aubrey de Grey: Things have certainly improved. I mean, there’s more money coming into the foundation, a little bit more money, but there’s a lot more money coming into the private sector, into the companies I mentioned and other companies that have emerged in parallel with us. The overall funding for rejuvenation biotechnology has increased a lot in the past few years, and we need it to increase a lot more. The private sector can’t do everything, not yet, anyway. There will come a time when SENS Research Foundation will be able to declare victory and say, “Listen, everything that needs to be done is being done well enough in the private sector that we no longer need to exist.” For the moment, that’s not true. For the moment, there are still quite a few areas in SENS that are at the pre-investable stage where only philanthropy will allow them to progress to the point where they are investable.

Yuri: It’s great to hear that there is money coming into SENS because from what I understand, there was a time when you had to use your own money to fund the foundation, is that correct?

Aubrey de Grey: That’s right. I inherited 16.5 million dollars of which I donated 13 million. That was back in 2012 before we had any projects that we could spin out into companies. That inheritance was very timely, but the point is that I would still do it even now. If my mother died today, I’d probably do the same thing, because the foundation is still the engine room of the industry. For the foundation, it’s kind of double aid. The more progress we make, the more credible the whole idea becomes, which, of course, improves our ability to bring in money. We are also creating new opportunities where you can invest rather than donate, so it’s kind of a disincentive to donate. There’s a balance there. Of course, every donor is different; some donors are more philanthropically inclined than others.

Yuri: From what I understand, you’ve had some high-profile donors like Peter Thiel who’s been supporting the foundation for a number of years. Is he still a supporter?

Aubrey de Grey: Peter started supporting us in 2006, 12 years ago. He’s actually pretty much phased out now. I understand that. Ultimately, he’s much more comfortable with investing than donating. He wanted to be sure that we’re actually creating something, and sure enough, we are. We speak all the time to his investment advisors, who focus on investment opportunities in the biotech sector, especially in the anti-aging sector. I’m sure that he will continue to contribute financially to this field, though the contributions are quite likely to be focused more on the companies rather than the foundation.

One way in which Peter is donating indirectly right now is that he funded Vitalik Buterin four years ago as a Thiel Fellow under the 20 Under 20 program. That was how and where Vitalik created Ethereum, which of course made Vitalik very wealthy, and Vitalik donated 2.5 million dollars to us a few months ago. He is very much philanthropically inclined. So, Peter is still donating to us by proxy.

Yuri: What about his PayPal co-founder, Elon Musk? Has Peter ever connected you two or maybe you spoke to Elon yourself?

Aubrey de Grey: I have indeed met Elon many years ago, probably 10 years ago. I haven’t met him recently. In general, I think it’s quite unlikely that Elon will get heavily involved in this just because he’s got other things to focus on. It’s a bit like Bill Gates, though in the opposite direction. Bill Gates has pretty much explicitly said that his priority is to help the disadvantaged. He’s much more interested in mosquito nets in sub-Saharan Africa and less interested in people who already have advantages. Elon is kind of at the other end of the spectrum. He is more of a “toys for boys” kind of guy. He’s more interested in space travel and solar energy and so on. The thing is I don’t want to take money away from either one of those two people. I think that both of them are doing fantastic work that really matters for humanity. There are plenty of other people, such as Peter Thiel, who are in the middle, who do understand the enormous value of defeating aging, and who have the vision to understand who is likely to be able to do it, so I don’t want to distract either Elon or Bill from what they’re already doing.

Yuri: Do you think Elon might be moving in a somewhat different direction of mind uploading for circumventing aging?

Aubrey de Grey: Yes and no. I kind of pay attention to what he is doing with Neuralink and what people like Bryan Johnson are doing with Kernel. I am closely connected with those groups. I know a lot of people in that space. At the end of the day, I think they know as well as I do that it’s very, very speculative. Ways in which we might transfer our consciousness, our personality to different hardware, while still satisfying ourselves that we are genuinely the same person after the transfer rather than just creating a new person – those are pretty speculative ideas. There is a long way to go to make them even slightly comparable to something that competes with medical research.

Yuri: So you think that mind uploading, even if theoretically possible, is still far off in the future as something feasible?

Aubrey de Grey: It’s always dangerous these days to say that such and such technology is definitely not going to be developed until some particular number of years in the future. At some point, people said that the game of Go would never fall to a computer, but then AlphaGo came along. However, it is a certainty that the distance that we have to go is much larger in the case of mind uploading than in the case of the boring “wet approach” of medical research.

Yuri: Speaking of AlphaGo and AI, some researchers in the aging space are working AI as a kind of proxy to help us solve biology. What do you think about that approach?

Aubrey de Grey: There is definitely an intersection there. I actually know a lot of people who are at the cutting edge of AI research. I actually know Demis Hassabis, the guy who runs DeepMind, from when he was an undergraduate at Cambridge several years after me. We’ve kept in touch and try to connect every so often. I think it’s reasonable to view these things as very linked. I certainly agree with you that there are some AI researchers who are working on AI precisely because they don’t trust people like me to get the job done by the “wet approach”. That’s fine; they may be right, and if they are right, I’ll be just as happy for them to save my life rather than me saving their lives.

Yuri: Do you think we’re close to having AI help us with biology, or do you think it’s still years away?

Aubrey de Grey: There are some medical AI startups that are looking at ways to use machine learning against aging. One of the most prominent is InSilico Medicine led by Alex Zhavoronkov, which is largely focused on identifying drugs that can work in particular ways. It’s a very important area. I’m sure that we will use AI a lot in medical research in general. Whether we will go as far as supplanting medical research with the mind uploading approach, that’s a different question altogether.

Yuri: One of your most famous quotes is that you think that a person who will live for over 1,000 years has already been born. Do you still think so and what are the chances for, say, a 50-year-old person today to reach what you call Longevity Escape Velocity?

Aubrey de Grey: I certainly think what I used to think, and it is indeed as a result of the concept of the longevity escape velocity. I do not believe that even within the next hundred years, we’re likely to develop therapies that can completely 100% succeed in repairing all the damage that body does to itself in the course of its normal operation. I do believe that we have a very good chance within the next 20-25 years of fixing most of that damage, and most are good enough because it buys time to fix a bit more and then a bit more. The reason it buys time because the body is set up to tolerate having a certain amount of damage without significantly declining function. I think we’ve got a very good chance of getting to that point while we are staying one step ahead of the problem by improving the comprehensiveness of the therapies faster than time is passing.

Yuri: So that is essentially the definition of Longevity Escape Velocity, right?

Aubrey de Grey: Yes, to be precise, Longevity Escape Velocity is the minimum rate at which we will need to improve the comprehensiveness of these therapies subsequent to the point where we get the first ones working so they get us a couple of decades of extra life. The good news is that longevity escape velocity goes down with time, because the more we can repair, the longer it takes for the stuff we can’t repair to become problematic.

Yuri: If you had unlimited funding, how long do you think it would take for us to reach Longevity Escape Velocity or the technology necessary for it?

Aubrey de Grey: It’s actually pretty difficult to answer that question because the amount of funding is kind of self-fulfilling. Every increment of progress that we achieve makes the whole idea more credible, makes more people more interested, and makes it easier to bring in the money to make the next step. I think that, at the moment, unlimited funding could probably let us increase our rate of progress by a factor of three, but that does not mean that we will change the time to get to Longevity Escape Velocity by a factor of three, because when we get even a little bit closer to it, it will be easier to get money, and that factor of three will come down. I think that right now, if we got like a billion dollars in the bank, then, in the next year, we would probably do the same amount of work and make the same amount of progress that we would otherwise make in the next three years. In the year after that, only two years of progress, and in the year after that, only a year and a half, and so on. What that adds up to is that if I got a billion dollars today, we would probably bring forward the defeat of aging by about 10 years. And it’s a lot of lives, maybe 400 million lives.

Yuri: Yes, given that 100,000 people die per day from aging-related causes, it’s a lot of lives.

Aubrey de Grey: Yup.

Yuri: So, you said, “if I had a billion in the bank”. The Chan/Zuckerberg Initiative – they said they are prepared to spend 3 billion dollars to eradicate all diseases by 2099. Maybe they can set aside 1 billion for your work. Did you ever communicate with them?

Aubrey de Grey: All I can say is that my email address is not very difficult to find online. No, we have not been in talks, and they have not made it easy for us to get in touch with them.

Yuri: That’s disappointing, especially given your close geographic proximity and the fact that you probably have an overlapping social and professional network.

Aubrey de Grey: Yes, it is very disappointing. Of course, you can argue that it’s not quite as disappointing as the situation with Calico. Because in the case of Calico we are talking about people with equally deep pockets who have known me for 15 years and who have already decided that aging itself is a thing to target. Zuckerberg, first of all, he never met me, God knows how much he knows about what we even do. Certainly, none of the pronouncements from the Chan/Zuckerberg Initiative indicate that they even understand that aging is a medical problem. They may have a long way to get to the point of even considering this.

Yuri: Yes, they do use some odd phrasing, speaking about “eradicating all diseases”, considering that all age-related diseases have one root cause – the aging process.

Aubrey de Grey: This is part of the problem. People simply should not be using the word “disease” for age-related diseases. The fact is that if a medical condition is age-related, then it’s part of aging, as it mainly affects people who have been born a long time ago. That means that it shouldn’t be described using the terminology that makes people think that it’s a bit like infection. People will often tell each other that I say that aging is a disease or a collection of diseases. But that’s completely wrong: I say the exact opposite. I say that not only should the word “disease” not be broadened to include aging, it should be narrowed to exclude the so-called diseases of old age.

Yuri: So that would be cancer, Alzheimer’s and all kinds of heart conditions…

Aubrey de Grey: Yes, and atherosclerosis, everything that’s bad for people who have been born a long time ago but that very rarely, if ever, affects people in young adulthood.

Yuri: So would you call Alzheimer’s a pathology then? If it’s not a disease?

Aubrey de Grey: I would call it part of aging. The problem is the idea of carving up little bits of aging, pretending that they are separate from each other. They’re not; they’re all parts of – consequences of – a lifelong accumulation of damage.

Yuri: Interesting. There’s been quite a large ongoing effort among the aging research advocacy community to persuade WHO to include aging as a disease in its International Classification of Diseases.

Aubrey de Grey: Yes, it seems to be going quite well, and I am very pleased to see that this effort is being led by some Russians: Daria Khaltourina, who is very much Russian, and by Ilia Stambler, who is from Israel but of Russian extraction. Again, the Russians seem to “get it” much easier than most people and it’s very heartening to me.

Yuri: Do you support this inclusion of aging into ICD as a separate disease?

Aubrey de Grey: The ICD is a little bit different. The “D” in the ICD stands for disease, but the purpose of the ICD is to determine which things medicine should be attacking. It really should be the IC of “medical conditions”. We should be distinguishing medical conditions that are extrinsic, such as infections, from the ones that are intrinsic consequences of being alive, that are age-related. I believe that it would be better if we did that by using different words, but medical conditions of old age are medical conditions, and they ought to be listed in the ICD.

Yuri: I see. Thanks for clarifying! Can I ask you about your new role with Michael West at AgeX and BioTime?

Aubrey de Grey: Michael West and I have been friends for 20 years, and, of course, we have very closely aligned goals in life. We’ve never been able to work together in a formal capacity until now, but we’ve been very much mutual admirers. I’ve always looked up to Mike as someone who, way before anyone else, did something that I thought was impossible with the creation of an actual gerontology research company, as was the case with Geron 20 years ago. He’s done it three times by now: Geron, then Advanced Cell Technology, and now with BioTime.

AgeX is a new subsidiary of BioTime that is about to be floated independently on the stock market. The goal, of course, is very much our goal: damage repair. The area that AgeX is focusing on is stem cells. There are two main themes within AgeX. One of them is stem cell therapy in the normal sense: in other words, injecting stem cells. The particular differentiator that AgeX and BioTime have is the ability to create particularly pure populations of a particular type of stem cells, ones that will only do what you want them to do – they are lineage committed in a particular way. That’s something that other organizations don’t have the ability to do nearly so well, and it’s very important; you want to be able to give the people the type of stem cells they need and not give them the other ones in the wrong place, which might do damage. That’s one side.

The other side of AgeX, which is at a much earlier stage of development, so you shouldn’t be looking out for any products on the basis of this yet, is induced stemness. In other words, it’s giving an organism not stem cells per se but rather reagents that would cause cells already in the body to revert a little bit, become more stem-like and be more able to regenerate the tissues. We already have one compound that has this effect, but we have lots and lots more work to do that will allow this to be done safely and effectively.

Yuri: Is this based on Michael West’s work in planarians, axolotls and other animals that demonstrate the ability to regenerate lost limbs even in adulthood?

Aubrey de Grey: No, not really. Certainly, we pay attention to the regenerative capacity of lower organisms, but the main focus of AgeX’s work is on what happens in early development in mammals, particularly the phase change that happens during early development, which we call the embryonic-fetal transition. It’s a little bit imprecise; we are still characterizing it, and there’s still work to do and stuff to be understood. Basically, what happens is that over a relatively short period of time during development, there is a change in the level of expression in a number of genes; some of them go up, and some go down. The particular change that happens across the entire embryo seems to coincide with – and we think it’s causally related with – the loss of regenerative capacity. In other words, before this transition, a particular type of injury to the embryo is entirely reversed by regeneration, whereas after this transaction, the same type of injury is not reversed, it’s rather patched up with scarring. That’s what happens in the adult as well. We believe that this is very indicative of something that’s going on across the whole body and that has a close relationship with the decline in regenerative capacity and repair capacity against various problems within aging.

Yuri: Is that the COX7A1 gene that was described in a paper in conjunction with Alex Zhavoronkov?

Aubrey de Grey: Yes, COX7A1 is one of the genes that change expression during the embryonic-fetal transition. We do not yet know, or at least we’re not sure, whether it plays a causal role or whether it’s just a marker. We are definitely looking quite a lot at other genes that also change, but COX7A1 is the one we focused on first and most at this point, basically just because it has the sharpest transition in the cell types that we studied so far.

Yuri: Would gene therapy be the vehicle to deliver to the body a way to modulate that gene?

Aubrey de Grey: It might be. Exactly what you do depends on which cell types you decide matter the most in expressing or not expressing a gene and in terms of what gene you want to express. Yes, we might do it with gene therapy. Of course, there are different types of gene therapy. For example, if you want to knock a gene down, you can do RNA interference, which is something that doesn’t involve integrating a new gene into the cell’s DNA. If you want to knock a gene up, you can sometimes also do it by RNA interference, because you can sometimes find the genes that antagonize the gene you want to knock up. If you knock down the gene that antagonizes the gene you want to knock up, then it happens indirectly. There are lots of tricks that are specific to the details of the genetic network, but in general, we would want to manipulate the level of expression and effectiveness of certain genes that change during the embryonic-fetal transition.

Yuri: Can I ask you about a different potential gene therapy, for example, partial reprogramming using Yamanaka factors? Do you think it has any potential as a systemic anti-aging therapy?

Aubrey de Grey: This is the idea that’s actually very similar to what I just described when I talked about the idea of restoration of stemness that we are pursuing at AgeX. Mostly, we don’t know which way is going to work better. We believe that we have a priority in terms of intellectual property, which, of course, is important for investors, but that’s not my problem; I’m focusing on the science.

Obviously, we don’t know which way is going to work best. There are lots of possibilities. The guys who pioneered the idea of partial reprogramming in vivo – there’s a group in Spain led by Manuel Serrano, who is someone I know very well; he’s spoken at one or two of our conferences in Cambridge. He’s a great guy doing a number of other really useful things; he’s got a brilliant new innovation in terms of killing senescent cells as well, which is a completely different area of SENS, of course. More recently, someone in San Diego named Juan Carlos Izpisua Belmonte developed a similar technique that he was able to make work, and his technique involved the intermittent inducible expression of the Yamanaka factors. Essentially, what will determine which of these approaches is the best is not just how well it works but how much harm it does, because there is always a possibility with these things that you will cause cells to become more regenerative that you wished were less regenerative, such as cancer cells, and we need to find a way to control that. It’s possible that AgeX will be able to do this better by using different genes.

Yuri: Okay, great. The reason I knew about Arigos earlier is that I am a big proponent of cryonics. I wanted to ask about your views on cryonics and whether you would personally consider it for yourself?

Aubrey de Grey: Cryonics in general – my position is well known. I’ve been a member of Alcor and a member of its scientific advisory board for 16 years now. I am definitely a very strong supporter. I think that it’s an absolute tragedy that cryonics is still such a backwater publicly and that a large majority of people still believe that it has no chance of ever working. Complete nonsense! If people understood it better, there would be more research done to develop better cryopreservation technologies, and more people would have a chance at life.

The question is what can we do to make cryonics work really well? I certainly don’t have a strong philosophical position with regard to what kinds of revival constitute actual revival and what kinds constitute creating a totally new person from information that you got from the old person. I am not a philosopher, so don’t ask me about that. My personal inclination is that if I have to be cryopreserved at all, and I hope not to be just like any cryonicist, then I prefer to be woken up by being warmed up rather than by being rebuilt from some kind of information restored from slicing and scanning my original brain. Therefore, I am really interested in improving the cryopreservation process: in other words, reducing the amount of damage that is inflicted by the process of cryopreservation and therefore would need to be repaired for successful reanimation; of course, this is along with the damage that the body already had that led to it getting declared legally dead in the first place. Arigos, with its helium persufflation approach, is, in my mind, a massive breakthrough, a breakthrough even bigger than vitrification, which was made 20 or so years ago by Greg Fahy and his peers at 21st Century Medicine when they identified a rather elaborate cocktail of cryoprotectants called M22 that allows biological material of any size to be cryopreserved without any crystallization at all. It eliminated over 90% of the damage that cryopreservation would hitherto have done to biological tissues. After that, it had become the standard of care at Alcor, the Cryonics Institute, KrioRus, and elsewhere.

We need more because the fact is that we still got a lot of cracking that happens – large-scale fracturing – and we’ve also got the toxicity of cryoprotectants, which is mild but non-trivial. Persufflation appears to solve both of these problems pretty much 100% by pumping helium through the vasculature, thereby stopping cracks from propagating, and cooling so much faster that you can vastly lower the concentration of cryoprotectants and still get no crystallization.

Yuri: Did you work with Greg Fahy or Mike Darwin at all on this technology?

Aubrey de Grey: I don’t work with any of these people, but I certainly talk to them. I am not sure what Mike Darwin has done, but Greg, as far as I know, had no work with persufflation itself. Obviously, he pioneered vitrification, but persufflation is something that was first explored in the Soviet Union, I don’t know exactly where, decades ago. Rather like parabiosis, it’s an area that was explored in the Soviet Union and then fell into neglect, and then everyone forgot about it for a long time, and then people in California found out about it and started to do something. The big innovation that Arigos has introduced was using helium, which has a number of advantages for cryonics purposes, but we are definitely building on what was originally done in the Soviet Union.

Certainly, Greg Fahy has been involved in the conversation. He has been advising a lot, and my current understanding is that he is very optimistic about the promise of persufflation, which tells a lot about Greg. The fact is that if persufflation works as well as it’s probably going to work, it’s going to blow Greg’s last 20 years of work out of the water. It takes a lot of honor.

Yuri: Absolutely; Greg is an amazing scientist and human being. I think for him, just as for you, it’s all about defeating aging first, and everything else is secondary. In any case, do you have any other cryonics research planned as part of SENS or Arigos?

Aubrey de Grey: Not as part of SENS, but, of course, I talk to all these people all the time. Something that you might be aware of, which happened very recently, was that Alcor received a very large donation of 5 million dollars specifically for research from Brad Armstrong, one of the people who made plenty of money on cryptocurrencies.

Yuri: It’s great to see crypto millionaires donating money to longevity research.

Aubrey de Grey: Yes, 5 million dollars is a hell of a lot of money for research in cryonics compared to what’s been available up until now. I am actively helping Max More, CEO of Alcor, to decide how to spend it.

Yuri: That’s great to hear. Maybe we’ll get some research done on the restoration of brain activity after cryopreservation. I know that Greg Fahy has done some prior work on assessing LTP preservation, but it’s probably outside of the scope of our interview.

Switching topics, there’s a lot of talk about the biohacking community lately, and a lot of people call themselves biohackers these days. Some claim that taking supplements or working out qualifies as biohacking. Do you consider yourself a biohacker; do you take any supplements or nootropics like Ray Kurzweil or Dave Asprey or do anything else that could be considered as biohacking?

Aubrey de Grey: I don’t take any supplements; I don’t do anything special with my lifestyle. I am not saying that that’s my recommendation for other people. My situation is very strongly that I am prepared to listen to my body. I know that I am just a lucky guy. I am genetically built so that my aging is slow, and I am fortunate enough to have been tested for a total of five times now over the past 15 years; they’ve measured 150 different things in my blood and did all manner of physiological and cognitive tests. I always come out really well, way younger than I actually am, so I should be conservative: if it ain’t broke, don’t fix it.

I eat and drink what I like, and nothing happens. I will pay attention to the situation when it changes, but it’s not changing yet. There’s a couple of things that I do that are bad for my health, especially the fact that I travel so much that I am not getting enough sleep. I think I’ve been coping with that so far as well, and, of course, the reason I do this is to hasten the defeat of aging with all the work that I do. Maybe it’s a net win. The bottom line is that I’m lucky.

I don’t say that Ray Kurzweil is being dumb in doing what he’s doing. On the contrary, Ray is one of the unlucky people; he came down with Type 2 diabetes in his 30s, and his family has had a lot of cardiovascular problems. It probably makes sense for him to be taking all of these supplements in order to largely normalize his rate of aging. For somebody whose rate is normal or better, there’s no evidence that taking supplements could actually have any benefit.

Yuri: What about the cognitive enhancers that Dave Asprey is recommending? Have you ever found anything that works or that you have considered trying?

Aubrey de Grey: No, I let my brain do what it normally does. Even for jet lag or needing to go to sleep, I don’t need these things. I can get to sleep whenever I am tired, whatever time of day it is. I occasionally thought it might be good to have a stash of modafinil just to be able to get through times when I need to stay awake for a long time, but I managed to work my way around those periods, so I haven’t done that either.

Yuri: Maybe your brain is already overactive – I read that you do math problems for fun, and what was this preprint that you published that made a splash in the media?

Aubrey de Grey: I’ve always played with maths for fun. I am reasonably good with certain types of maths, especially those that don’t need too much background knowledge because I don’t even have a degree in maths like graph theory or combinatorics. Yes, earlier this year, I got lucky and made some progress on a very famous long-standing maths problem called the Hadwiger-Nelson problem, and that got a bit of attention. The thing that strikes me the most about all that is that a number of people said, “I always thought Aubrey de Grey was a bit of a lunatic and never paid any attention to what he said about aging, but now that he made progress in this maths problem, he’s obviously smart, so now I will pay attention to what he says about aging.” I think that’s the most fucked-up logic you can possibly imagine, but I’ll take it.

Yuri: From what I understand, despite your background in computer science and no formal training in biology, you actually also have a Ph.D. in biology for your work in mitochondrial respiration back in the 1990s. Is that correct?

Aubrey de Grey: Yes, that’s correct. I benefited from the fact that I’d done my undergraduate degree fifteen years earlier in Cambridge. Of course, that was in computer science, but there’s a system at Cambridge where if you do your undergrad degree there, then you don’t have to be a Ph.D. student to get a Ph.D. from Cambridge. You can just submit published work, it gets evaluated like a dissertation, and you do a thesis defense. Mitochondrial respiration was probably the first area in biology that I got interested in and that I was invited to write a book about, so I did. It included the material for the first six papers of mine, and that’s what I ultimately got my Ph.D. for.

Yuri: It seems that the mitochondrial theory of aging was all the rage back then but has lost a lot of its appeal over the past two decades.

Aubrey de Grey: Yeah, that’s a problem. The reasons why things move in and out of fashion in a biological field are often overly superficial. Nothing’s really changed. Twenty years ago, people were overly breathless about mitochondria and free radicals, and they were neglecting the importance of the shortcomings of those theories, which my first couple of papers helped to repair. I pointed out that you can’t just say “mitochondrial mutations matter because free radicals matter.” You’ve got to flesh it out, and I did flesh it out in a way that nobody else had bothered to do.

Conversely, what happened more recently is that people have swung the other way, saying “there’s various new evidence that free radicals don’t matter, therefore game over.” Again, they are being overly simplistic in the opposite direction. In fact, what this new evidence shows is that certain, particularly simplistic, versions of the free radical theory of aging are not true, but people like me who actually pay attention knew that all along. For me, nothing’s really changed.

Yuri: You make an excellent point that there seems to be some kind of fashion in the field of biology in general or aging research in particular. I wonder why; is it just human nature to jump on the bandwagon and reject all other ideas, or is it groupthink? What is it about science?

Aubrey de Grey: In science, I would say it’s even worse than groupthink. It’s not a question of people just being sheep because they can’t think for themselves. Scientists can think for themselves. The problem in science is that people are forced to follow fashion in order to get money, whether it’s in the form of a grant application, funding, getting promoted, or tenure, which is appalling, because the whole point of science is to go against the grain, to be in the minority of one as often as possible, and to find things out that people didn’t know before. However, the way that the scientific career structure these days actually works opposes that. It’s a tragedy.

Yuri: Indeed, the incentives for going against the grain seem to be misaligned. Is there any way to mitigate this?

Aubrey de Grey: The only solution is to throw a lot more money at science so that people can be career scientists in a way that they used to be 200 years ago when no scientists were without patrons, wealthy noblemen who kept them as pets. They were getting stuff done, and they didn’t have to worry about justifying how they were getting stuff done.

Yuri: Well, let’s hope some philanthropically inclined wealthy noblemen hear you and create more fellowships. Okay, final, semi-serious question: once humanity does reach negligible senescence, what would that do to relationships, family institutions, marriage, and children?

Aubrey de Grey: Nothing at all. The only things that would happen as a result of increased longevity are simply the continuation of societal changes that have already been occurring over the past century. What I see is that as people live longer and stay healthy longer, there’s a rapid increase in the number of divorces, the number of people who have multiple relationships over their lives, and it’s just going to be a continuation of that. It’s not interesting.

Yuri: And overpopulation is never going to be an issue, right?

Aubrey de Grey: This is the one that everybody is worried about, but it’s just so silly that people worry about it. I’ve been saying this since forever – and nobody contradicts my answer, they just ignore it – the answer is that the carrying capacity of the planet, the number of people it can sustain without a problematic amount of environmental impact, is going to go up much faster than the population can possibly go up even if we completely eliminated all death. It’s going to go up as a result of renewable energy, artificial meat, desalination, and all those things. It’s just so painfully obvious, and I’ve been saying this in so many interviews and so many talks, and people just ignore it. I think the only reason people are ignoring my answer is because they need to. They need to carry on believing that aging is a blessing in disguise and thus be able to put it out of their minds, get on with their miserably short lives, and not get emotionally invested in the rate of progress that we will make.

Yuri: Well, let’s hope we can shake them out of their learned helplessness in the face of death and aging.

Aubrey de Grey: Absolutely.

Yuri: Great, thank you so much for this interview! I really look forward to seeing you in Moscow soon and discussing some of these issues in person as well as hearing about your latest achievements in the fight against humanity’s biggest problem!

Aubrey de Grey: Indeed! Thanks so much, Yuri, it’s been great.

Yuri Deigin is a serial entrepreneur and an expert in drug development and venture investments in biotechnology and pharmaceuticals. Yuri brings almost a decade of drug discovery and development experience from his previous role in a biotech startup where he oversaw research and development of original medicines aimed at treating diseases like Alzheimer’s and rheumatoid arthritis. Yuri has a track record of not only raising over $20 million for his previous ventures but also initiating and overseeing 4 clinical trials and several pre-clinical studies, including studies in transgenic mice. He also has experience in pharmaceutical product launch, promotion, manufacturing, and supply-chain management. Since 2013 Yuri also serves as a vice-president of the non-profit Foundation “Science for Life Extension” whose goal is the popularization of the fight against age-related diseases. To further this cause, Yuri frequently blogs, speaks, writes op-ed pieces, and participates in various TV and radio shows. Yuri holds a B.Sc. from the University of Toronto and an M.B.A. from Columbia Business School. Yuri is the CEO of biotech company Youthereum Genetics.