Browsed by
Tag: senolytics

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Why I Am Future-Positive on My Birthday – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by our guest Steve Hill, originally published by the Life Extension Advocacy Foundation (LEAF) on June 7th, 2019. In this article, Mr. Hill discusses how he feels great about being over 40 years old, instead of the depressing feeling that many tend to have on their birthdays, because he is very aware of how close medical science is to curing age-related diseases. He goes on in discuss, in his opinion, two of the most promising research methods being sought by various companies to defeat age-related diseases.

~ Bobby Ridge, Assistant Editor, July 7, 2019


Not so long ago, it was my 44th birthday, and I’ve finally decided to write something that I’ve been reflecting on for a while. To some people, a birthday is a cause for celebration; for others, it is viewed as a bad thing.

Yes, if you take the negative view, you could see it as simply a reminder of being another year older and another year closer to the grave. However, this is not how I see it; in fact, I think quite the opposite. I see it as another year closer to our goal: the defeat of age-related diseases due to the progress of rejuvenation biotechnology that offers longer and healthier lives.

From my point of view, viewing birthdays, or, indeed, the passing of time, as a positive or negative thing is largely a question of knowledge and understanding of the aging research field, which ties in with what I want to address today.

Knowledge is power

During my work as a journalist, people often ask me how things are progressing in the field. This is, of course, a perfectly reasonable and understandable question to ask. While I am always more than happy to talk about the field and answer this question, I also urge people to delve deeper into the field so that they can learn and evaluate for themselves rather than simply taking my word for it.

Our website, including the Rejuvenation Roadmap, is a good resource to start learning and to hear the latest news, as are places such as FightAging and the SENS Research Foundation website. Conferences such as Ending Age-Related Diseases and Undoing Aging are also valuable places to learn more about what is happening in the field.

Sometimes, I encounter people outside, but also fairly frequently within, the community who can be somewhat pessimistic about the field and its progress. It is perfectly natural to be cautious about the unknown, but there comes a point at which caution becomes unwarranted pessimism. The “Science Will Not Defeat Aging in My Lifetime, so Why Bother?” argument is a classic example of this, and much of this is caused by a lack of knowledge and understanding of the field.

The Latin phrase scientia potentia est, meaning “knowledge is power”, is particularly apt here. Knowledge and understanding allow us to better evaluate a situation or a proposal and reach a conclusion. It is hard to reach an accurate conclusion about anything without all the facts in place, yet I often see people doing it. Of course, there are always people who will not put in the time and effort required to learn about a topic properly, so they make predictions without all the facts, but there really isn’t much we can do about these people.

However, as advocates and supporters, we can do our best to learn about such things ourselves, and this will also come in useful when speaking to others about the field, as there is nothing like having a good understanding of the topic to help you convey it to others. That does not mean you need to become a biologist and understand things to such deep levels but even a solid understanding of the basics can be a huge help when it comes to engaging with others on the subject and also for understanding where we are currently progress wise.

Future-positive

This relates to a second question people often tend to ask me, which is if I think that they or we have a chance of living long enough to see these technologies arrive.

Obviously, no one can predict the future, so this question, by its very nature, is a tricky one to answer. I generally avoid being too specific on the timeframe in which we will reach the goal of longer lives through science, but I am optimistic that people in my age group, even perhaps older, have a reasonable chance of making the cut.

The reason that I am generally optimistic about the future is mostly that, as a journalist who speaks to hundreds of researchers, each focused on a part of the puzzle, I get an almost unique picture of the field. I can see the broader landscape and how and where things in the field or related fields connect or may connect in the future. A breakthrough in a related medical field may not have immediately apparent utility in aging research at first glance, but a deeper look could reveal hidden potential.

This fairly unique insight, combined with the knowledge that I have collected over the years working in the field, makes me fairly optimistic about the future and my place in it. As I have said a number of times in the past, the defeat of age-related diseases will not suddenly happen overnight; there is unlikely to be a single moment at which humanity goes from having no choice about aging to having control. It is far more likely that there will be steady progress, with incremental breakthroughs along the road, that will ultimately reach the goal.

Reasons to be cheerful

I would like to touch upon two of the most promising therapies that I am most interested in and believe may have a big impact in the near future (10-20 years) and that may help pave the way for major changes to how society thinks about and treats aging. Both of these therapies directly address one of the nine proposed causes of aging and thus if they work they have the potential to be transformative in healthcare. Of course, there are more therapies in development and at various stages of progress which also address the other causes of aging but these two are what I am most enthusiastic about presently. I urge you to explore the provided links to resources and learn more about each one.

Senolytics

No list of promising technologies would be complete without talking about the senescent cell-clearing drugs and therapies known as senolytics. Senescent cells are aged or damaged cells that should destroy themselves via a process known as apoptosis but, for various reasons, do not do so; instead, they hang around, sending out inflammatory signals that harm nearby healthy cells, block effective tissue repair, and contribute to numerous age-related diseases.

One proposed solution to these problem cells is to remove them by causing them to enter apoptosis, as originally intended, by using senolytic drugs and therapies. Removing these cells in mouse studies has produced some remarkable results, with mice often living healthier and longer lives as well as reversing some aspects of aging.

The race is now on to bring these drugs to people, and a number of companies are developing them right now. So far, UNITY Biotechnology has seen the most progress, and the company is already conducting human trials of its lead candidate drug (UBX0101) for the treatment of osteoarthritis. It has another candidate drug (UBX1967) closely behind; this drug is poised to enter human trials for the treatment of age-related macular degeneration, diabetic macular edema, diabetic retinopathy, and glaucoma. Based on recent comments from UNITY, we are anticipating the initial results of human trials in the next few months; hopefully, the news will be positive.

With the number of companies working on these therapies, it is fair to be optimistic about their potential to address multiple age-related diseases given that senescent cells are a proposed root cause of aging. You can also check out the Rejuvenation Roadmap to see which companies are working on senolytics and how they are progressing.

Partial cellular reprogramming

Cells can be reverted back to an earlier developmental state, known as induced pluripotency, using reprogramming factors, and this process effectively makes aged cells functionally young again in many ways. Ever since its first discovery, there has been a great deal of interest in this area of aging research.

The problem with inducing pluripotency is that the cell loses its identity and forgets what cell type it currently is, as it becomes a new kind of cell capable of being guided into changing into any other cell type, much like our cells during development. This is great for early human development, but as adults, having our cells forget what they are is bad news. Therefore, researchers have wondered if it is possible to reset a cell’s age without resetting its cell memory, and the answer appears to be yes!

Thankfully, during the reprogramming of a cell back to pluripotency, the cell’s age is one of the first things to be reset before the cell memory is wiped, and it appears possible to partially reprogram the cell so that only aging is reset. We have talked about the potential of partial cellular reprogramming and how it is similar to hitting the reset button on aging in a previous article, but, needless to say, if we can find a way to safely partially reprogram our cells, it could have a dramatic impact on how we age and may allow us to remain more youthful and healthy.

In terms of progress, partial reprogramming has already been demonstrated in mice, and now a number of groups, including Turn.Bio, the Salk Institute, Life Biosciences, Youthereum Genetics, and AgeX, are developing therapies based on partial reprogramming, which is essentially the resetting of cells’ epigenetic states (what genes are expressed) from an aged profile to a more youthful one, again directly targeting one of the proposed root causes of aging.

This approach is likely to be quite a few years away, but I think it is plausible that it could be in human trials in the next decade, and it is probably the approach that interests me the most in the field.

In closing

The truth is we cannot predict the future because it is not set in stone, so we cannot be totally certain if or when rejuvenation technologies will arrive. The best we can do is learn as much as we can about the field and try to reach a reasonable conclusion based on the situation as it is now.

The field is advancing steadily, and we should be optimistic but not complacent about progress. We should be mindful of being too negative and, equally, of being too positive without ample justification. Blind optimism is as bad as blind pessimism, and we should always strive for informed optimism.

That said, given the progress being made, I am optimistic about my chances based on the evidence to date. This is why I do not mind birthdays and why I find them positive experiences rather than negative ones. Arm yourself with knowledge, and perhaps you too will agree with me and understand why I am future positive.

Steve Hill serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity, created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

Human Pilot Study Results for Senolytics Published – Article by Steve Hill

Human Pilot Study Results for Senolytics Published – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by Steve Hill, originally published by our allies at the Life Extension Advocacy Foundation (LEAF) on January 7, 2019. This article presents the results of a human pilot study that involved the consumption of two promising senolytic drugs, dasatinib and quercetin, to target idiopathic pulmonary fibrosis. The results are promising and constitute a great step forward for senolytics being tested in human clinical trials. Another promising approach is the TAME trial, which is a double-blind randomized controlled clinical trial, to test if Metformin can treat various age-related diseases. 

~Bobby Ridge, Assistant Editor, July 4, 2019

The results from a human pilot study that focused on treating idiopathic pulmonary fibrosis with senescent cell-clearing drugs has been published. The drugs target aged and damaged cells, which are thought to be a reason we age and get sick, and remove them from the body.

Senescent cells and aging

As we age, increasing numbers of our cells become dysfunctional, entering into a state known as senescence. Senescent cells no longer divide or support the tissues and organs of which they are part; instead, they secrete a range of harmful inflammatory chemical signals, which are collectively known as the senescence-associated secretory phenotype (SASP).

Dr. Judith Campisi from the Buck Institute for Research on Aging, along with her research team, identified that senescent cells secreted the various harmful chemicals that characterize the SASP in 2008, which was when interest in senescent cells really began [1]. In 2010, building on this initial research, Dr. Campisi went on to show the link between the SASP and cancer [2].The SASP increases inflammation, harms tissue repair and function, causes the immune system to malfunction, and raises the risk of developing age-related diseases such as cancer. It can also encourage other nearby healthy cells to become senescent via the so-called bystander effect. Therefore, a small number of these cells can cause a great deal of harm.

Normally, senescent cells destroy themselves by a self-destruct process known as apoptosis before being cleared away by the immune system. Unfortunately, as we age, the immune system becomes weaker, and senescent cells start to build up in the body. The accumulation of senescent cells is considered to be one of the reasons why we age and develop age-related diseases.

It has been suggested that the clearance of senescent cells might help address a number of age-related diseases at once, as senescent cells are thought to be one of the fundamental reasons that we age. Drugs that can remove these unwanted, damaged cells are known as senolytics.

Human trial results for senolytics

This new publication by researchers at the Mayo Clinic, including James Kirkland, one of the pioneers of senolytic drugs, shows the results of a pilot study that uses dasatinib and quercetin to treat idiopathic pulmonary fibrosis [3].

Pulmonary fibrosis causes scarring of the lung tissue, which leads to the progressive loss of lung function over time. When the disease’s origin is unknown, it is called idiopathic pulmonary fibrosis, or IPF. The treatment options for this disease are extremely limited with no currently known cure.

The researchers in this new study tested a combination of dasatinib and quercetin, one of the earliest senolytic drug combinations that was tested in mice and shown to have beneficial results, particularly for the cardiovascular system [4-5]. It was also shown in a previous study that clearing senescent cells using dasatinib plus quercetin was able to alleviate idiopathic pulmonary fibrosis (IPF)-related dysfunction in a mouse model of the disease.

Fourteen patients with IPF were recruited for this pilot study, and the initial results, while leaving room for improvement, are promising.

Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulating SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50).

It should be noted that this was only a small pilot study and that the optimal human dosage and frequency is yet to be established. Typically, the next step is to launch a larger-scale study to establish this dosage.

The researchers also note that these results warrant evaluation of dasatinib plus quercetin in larger, randomized, and controlled trials for senescence-related diseases. In other words, they would like to test senolytics in larger studies for various age-related diseases, and the results certainly support doing exactly that.

Conclusion

These initial results are positive, despite there being plenty of room for improvement. The combination of these two drugs also appears to favor particular cell and tissue types over others, much like other senolytic drugs, which were discovered after dasatinib and quercetin were originally shown to clear senescent cells. It may be that a combination of different senolytics will be needed as a “cocktail” of sorts to fully clear out all the unwanted senescent cells, as different senescent cells appear to use various survival pathways to evade apoptosis, and no single drug can target them all.

We greet these early results positively and look forward to the beginning of larger-scale studies for multiple age-related diseases. Given how senescent cells appear to be implicated in most if not all age-related diseases, there are some exciting possibilities ahead.

Literature

[1] Coppé, J. P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., Goldstein, J., … & Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS biology, 6(12), e301.

[2] Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathological Mechanical Disease, 5, 99-118.

[3] Nambiar, A., Justice, J., Pascual, R., Tchkonia, T., Lebrasseur, N., Kirkland, J., … & Kritchevsky, S. (2018). Targeting pro-inflammatory cells in idiopathic pulmonary fibrosis: an open-label pilot study of dasatinib and quercitin. Chest, 154(4), 395A-396A.

[4] Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … & O’hara, S. P. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644-658.

[5] Roos, C. M., Zhang, B., Palmer, A. K., Ogrodnik, M. B., Pirtskhalava, T., Thalji, N. M., … & Zhu, Y. (2016). Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging cell.[/column]

Steve Hill serves on the LEAF Board of Directors and is the Editor-in-Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 500 articles on the topic as well as attending various medical industry conferences. In 2019 he was listed in the top 100 journalists covering biomedicine and longevity research in the industry report – Top-100 Journalists covering advanced biomedicine and longevity created by the Aging Analytics Agency. His work has been featured in H+ Magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Keep Me Prime, and New Economy Magazine. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project. In 2015 he led the Major Mouse Testing Program (MMTP) for the International Longevity Alliance and in 2016 helped the team of the SENS Research Foundation to reach their goal for the OncoSENS campaign for cancer research.

 

2019 New Year’s Message – A Call for Medical Progress and Preservation of the Good – Article by Victor Bjoerk

2019 New Year’s Message – A Call for Medical Progress and Preservation of the Good – Article by Victor Bjoerk

logo_bg

Victor Bjoerk


I celebrated the end of 2018 like normally with neuroscientist Anders Sandberg and several other “transhumanists” or “technoprogressive people” in Stockholm!

Why am I in that place to start with? Well, I’m quite frustrated with the human condition in the first place; I’ve always questioned everything from social norms and different kinds of problems in the world, and there’s still so much misery around that we need to unite and fix. (I know it sounds cliché, but it’s true!)

As people reading this know, the vast majority of human misery worldwide today occurs due to our bodies damaging themselves with the passage of time, the biological process we call aging. This occurs because evolution has no goals and our ancestors died at the age of 30-40 prehistorically, and therefore there was no pressure for evolution to create humans that could repair themselves molecularly to live thousands of years. The closest we get among Eukaryotes/Vertebrates are Greenland sharks, which can live to 500+ years; that is easy to understand since they have no predators and just have to open their mouths to get their daily food. On the opposite side we have as a prominent example the mouse, with a very poor molecular repair system and subsequent 2.5-year lifespan, easy to understand when you realize how dangerous life is in the wild if having a mouse body.

Thanks to our technology, we have created the “paradise Greenland shark scenario” for humans during the past century essentially, creating very comfortable existences where nearly everyone survives.

So if you’re 25 years old, life is really great nowadays in Western countries (unless you like to complain about everything!); the existential risks are so low in the absence of aging that you would live many thousands of years just by being a young person living in Sweden.

So I’ve worked a lot in nursing homes both before and during my studies in molecular biology, and what those people have to endure would be strictly illegal in most countries if we knew how to change it. Imagine if, for example, Saudi Arabia allowed its citizens to age while the Western world had abolished it; wouldn’t Amnesty International intervene?

But what can be done with the human body? Well, I assume quite a lot! We are seeing so many people who can’t stand the medical monopoly and the 17-year bench-to-bedside status quo, which isn’t an abstract academic complaint but which impact their daily lives, so they start self-experimenting with, for example, senolytic medicines to kill their senescent cells, making themselves “younger” in certain aspects, which is pretty cool!

However I’m not someone who constantly calls for change and “progress”; I mean, if something is nice, then why not keep it? As far as I’m concerned, for example, the beautiful architecture from the past can continue to stand for thousands more years. These buildings fulfill their purpose and look nice; I’m quite conservative on those points – but please accelerate the medical research, and it is crucial to spot the techniques that actually do work and to not waste resources on hype!

2018 has brought me many good things, those which one can call “achievements” and those which are not visible. The Eurosymposium on Healthy Aging in Brussels became a success! (And there will be some events during 2019 that I am also announcing for everyone who enjoyed it!)

I’ve been learning a lot about CRISPR and many other techniques both practically and theoretically, though I have not exactly used them to change the world. Medical progress takes forever to achieve, and it’s not exactly helped by a massive web of bureaucracy/hierarchies/prestige/laws, all contributing to slowing down progress for people in need. What can really be done? One needs to focus on the positive and go where the biotech companies can succeed!

So if things are working out for me as I hope now in 2019, I hope being able to really work full time to impact the longevity industry, I really feel like an overripe fruit that needs to get things done, because implementing stuff is what matters and not becoming some passive “longevity encyclopedia”. I’ll keep everyone as usually updated!

So happy new 2019 everyone! And make sure to take good care of yourselves!

Victor Bjoerk has worked for the Gerontology Research Group, the Longevity Reporter, and the Fraunhofer-Institut für Zelltherapie und Immunologie. He has promoted awareness throughout Europe of emerging biomedical research and the efforts to reverse biological aging. 

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

logo_bg

Scott Emptage


I will be 85 sometime in the early 2070s. It seems like a mirage, an impossible thing, but the future eventually arrives regardless of whatever you or I might think about it. We all have a vision of what it is to be 85 today, informed by our interactions with elder family members, if nothing else. People at that age are greatly impacted by aging. They falter, their minds are often slowed. They are physically weak, in need of aid. Perhaps that is why we find it hard to put ourselves into that position; it isn’t a pleasant topic to think about. Four decades out into the future may as well be a science-fiction novel, a faraway land, a tale told to children, for all the influence it has on our present considerations. There is no weight to it.

When I am 85, there will have been next to no senescent cells in my body for going on thirty years. I bear only a small fraction of the inflammatory burden of older people of past generations. I paid for the products of companies descended from Oisin Biotechnologies and Unity Biotechnology, every few years wiping away the accumulation of senescent cells, each new approach more effective than the last. Eventually, I took one of the permanent gene therapy options, made possible by biochemical discrimination between short-term beneficial senescence and long-term harmful senescence, and then there was little need for ongoing treatments. Artificial DNA machinery floats in every cell, a backup for the normal mechanisms of apoptosis, triggered by lingering senescence.

When I am 85, the senolytic DNA machinery will be far from the only addition to my cells. I underwent a half dozen gene therapies over the years. I picked the most useful of the many more that were available, starting once the price fell into the affordable-but-painful range, after the initial frenzy of high-cost treatments subsided into business as usual. My cholesterol transport system is enhanced to attack atherosclerotic lesions, my muscle maintenance and neurogenesis operate at levels far above what was once a normal range for my age, and my mitochondria are both enhanced in operation and well-protected against damage by additional copies of mitochondrial genes backed up elsewhere in the cell. Some of these additions were rendered moot by later advances in medicine, but they get the job done.

When I am 85, my thymus will be as active as that of a 10-year-old child. Gene and cell therapies were applied over the past few decades, and as a result my immune system is well-gardened, in good shape. A combination of replacement hematopoietic stem cells, applied once a decade, the enhanced thymus, and periodic targeted destruction of problem immune cells keeps at bay most of the age-related decline in immune function, most of the growth in inflammation. The downside is that age-related autoimmunity has now become a whole lot more complex when it does occur, but even that can be dealt with by destroying and recreating the immune system. By the 2030s this was a day-long procedure with little accompanying risk, and the price fell thereafter.

When I am 85, atherosclerosis will be curable, preventable, and reversible, and that will have been the case for a few decades. There are five or six different viable approaches in the marketplace, all of which basically work. I used several of their predecessors back in the day, as well. Most people in the wealthier parts of the world have arteries nearly free from the buildup of fat and calcification. Cardiovascular disease with age now has a very different character, focused more failure of tissue maintenance and muscle strength and the remaining small portions of hypertension that are still problematic for some individuals. But that too can be effectively postponed through a variety of regenerative therapies.

When I am 85, there will be an insignificant level of cross-linking in most of my tissues, as was the case since my early 60s. My skin has the old-young look of someone who went a fair way down the path before being rescued. Not that I care much about that – I’m much more interested in the state of my blood vessels, the degree to which they are stiff and dysfunctional. That is why removal of cross-links is valuable. That is the reason to keep on taking the yearly treatments of cross-link breakers, or undergo one of the permanent gene therapies to have your cells produce protective enzymes as needed.

When I am 85, I will have a three-decade patchwork history of treatments to partially clear this form of amyloid or that component of lipofuscin. I will not suffer Alzheimer’s disease. I will not suffer any of the common forms of amyloidosis. They are controlled. There is such a breadth of molecular waste, however: while the important ones are addressed, plenty more remain. This is one of the continuing serious impacts to the health of older individuals, and a highly active area of research and development.

When I am 85, I will be the experienced veteran of several potentially serious incidences of cancer, all of which were identified early and eradicated by a targeted therapy that produced minimal side-effects. The therapies evolve rapidly over the years: a bewildering range of hyper-efficient immunotherapies, as well as treatments that sabotage telomere lengthening or other commonalities shared by all cancer cells. They were outpatient procedures, simple and quick, with a few follow-up visits, so routine that they obscured the point that I would be dead several times over without them. The individual rejuvenation technologies I availed myself of over the years were narrowly focused, not perfect, and not available as early as I would have liked. Cancer is an inevitable side-effect of decades of a mix of greater tissue maintenance and unrepaired damage.

Do we know today what the state of health of a well-kept 85-year-old will be in the 2050s? No. It is next to impossible to say how the differences noted above will perform in the real world. They are all on the near horizon, however. The major causes of age-related death today will be largely controlled and cured in the 2050s, at least for those in wealthier regions. If you are in your 40s today, and fortunate enough to live in one of those wealthier region, then it is a given that you will not die from Alzheimer’s disease. You will not suffer from other common age-related amyloidosis conditions. Atherosclerosis will be reliably controlled before it might kill you. Inflammatory conditions of aging will be a shadow of what they once were, because of senolytic therapies presently under development. Your immune system will be restored and bolstered. The stem cells in at least your bone marrow and muscles will be periodically augmented. The cross-links that cause stiffening of tissues will be removed. Scores of other issues in aging process, both large and small, will have useful solutions available in the broader medical marketplace. We will all live longer and in better health as a result, but no-one will be able to say for just how long until this all is tried.

Scott Emptage is an anti-aging activist in the United Kingdom. 

The Best of the SENS AMA – Article by Steve Hill and Aubrey de Grey

The Best of the SENS AMA – Article by Steve Hill and Aubrey de Grey

Steve Hill

Dr. Aubrey de Grey


Editor’s Note: In this article, Steve Hill highlights the Ask Me Anything on Reddit held on December 7th by Dr. Aubrey de Grey.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, December 13, 2017

 

Dr. Aubrey de Grey from the SENS Research Foundation (SRF) did an Ask Me Anything on Reddit on December 7th, and there were many great questions and answers; we thought it would be a great time to summarize some of the best ones and offer a little commentary.

What do you think were the biggest wins of the last couple of years in SENS-relevant advocacy, research, and development? What has moved the needle?

There have been lots. On the research, I would highlight our paper in Science two years ago, which shows how to synthesize glucosepane, and our paper in Nucleic Acids Research one year ago, which shows simultaneous allotopic expression of two of the 13 mitochondrial genes. Both of those projects have been greatly accelerated in the meantime as a result of those key enabling breakthroughs; watch this space.

On advocacy, I think the main win has been the arrival of private capital; I would especially highlight Jim Mellon and his Juvenescence initiative because he is not only a successful, energetic and visionary investor, he is also a highly vocal giver of investment advice.

We are pleased to have been involved with the second project mentioned here, as we hosted the MitoSENS project at Lifespan.io, where it raised 153% of its initial fundraising goal. Less than a year later, after raising this money, it went on to publish the groundbreaking study showing that backup copies of mitochondrial genes could indeed be created in the nucleus. Dr. de Grey originally proposed the idea over a decade ago amid much scepticism; it is really good to see that years later he has been vindicated. This is the power of crowdfunding and how we as a community can make big changes in science by working together.

How do you feel about the impact of groups like LEAF advocating and reporting on rejuvenation biotech? Has the advocacy and reporting of these groups made your life any easier?

Massively! A huge thing that I say all the time is that advocacy absolutely relies upon the diversity of its messengers. Different people listen to different forms of words, different styles of messaging, etc. The more, the better.

It’s good to know that our work is appreciated and helping. Working together as a community is essential for progress, so it was nice to see this question and response from someone we respect a great deal.

We have said many times before effective advocacy efforts are just as important as the research itself. Professional advocacy has the potential to increase public support and funding, paving the way for the arrival of rejuvenation biotechnology. In the past decade or so, advocacy has mostly been left to volunteers and people such as Dr. de Grey.

Popular causes attract celebrities, public support, funding and investment; if we want a revolution in medicine and how we treat aging, then we must popularize the movement. There has been a serious shortage of full-time and organized advocacy; therefore, we decided to create LEAF to support groups like the SRF, advocate to popularize the cause, and help to raise much-needed funds for research efforts. We are only able to do this thanks to the support of the community, and we are extremely grateful to our Lifespan Heroes for helping us to do the work we do.

Aside from funding, what do you consider to be a burden or delay for your type of research?

Nothing. Seriously, nothing at all. We have the plan, and we have the people. It’s all about enabling those people by giving them the resources to get on with the job.

Indeed, funding for research is one of the four major bottlenecks slowing down the development of therapies that address the aging processes. The more funding the field gets, the more projects can be launched, the sooner breakthroughs can potentially happen, and the greater the benefits will likely be for all of us.

Is there anything new you are able to say about the breaking of cross-links in the extracellular matrix?

Absolutely. Short story, we now have a bunch of glucosepane-breaking enzymes, and we are within a few months of spinning the work out into a startup.

A suspected cause of degenerative aging is the accumulation of sugary metabolic wastes known as advanced glycation end-products (AGEs). These are wastes that are, in some cases, hard for our metabolism to break down fast enough or even at all. Some types, such as glucosepane, can form cross-links, gumming together important proteins such as those making up the supporting extracellular matrix scaffold.

The properties of elastic tissues (skin and the blood vessel walls) derive from the particular structure of the extracellular matrix, and cross-links degrade that structure, preventing it from functioning correctly. AGEs’ presence contributes to blood vessel stiffening with age, and it is implicated in hypertension and diabetes.

That SRF now has candidate enzymes is very significant because it means that there are now potential ways to remove these crosslinks from our tissues. There are many types of crosslinks, and we already know of compounds and drugs that can break other kind of crosslinks; the major problem is glucosepane, as it lasts a very long time, and, so far, nothing is known to remove it. Given that other types of crosslinks can be removed, Dr. de Grey rightly thought that there must be ways to remove (cleave) glucosepane from tissues; now, it seems that we are a step closer to that potentially becoming a reality.

If the SRF is successful in finding ways to break glucosepane crosslinks, this has huge implications for diabetes, hypertension and aging. It is great to hear that the organization is now reaching the point at which it is almost time to develop this as a therapy by creating a startup company.

It seems likely that artificial intelligence will be a necessary tool in order to reach longevity escape velocity. I was wondering how much of a role does artificial intelligence play in your research? Is this something you devote many resources to?

We don’t, but that is because other major players in this field (and good friends of mine), such as Alex Zhavoronkov and Kristen Fortney, are doing it so well already (with Insilico Med and BioAge, respectively). Check out the BioData West conference that will occur in SF a couple of days before our Undoing Aging conference in Berlin; I will be chairing a session on this.

We believe that the application of AI and, in particular, machine learning will prove to be a very valuable tool for research in the coming years. Such systems are ideally suited for high-throughput, laborious tasks that also require high attention to detail and would take humans a long time to do. Drug discovery, image analysis and many more tasks in the lab could potentially be automated, saving time and freeing up researchers to work on other critical tasks.

We are proud to have hosted the MouseAge project this year, which is an AI-based visual aging biomarker application that helps researchers determine the age of mice without the use of harmful tests. In a few months, researchers will be able to use the MouseAge application in the lab to help speed research progress up. This is just one example of how AI can be used in aging research and how the community helped to make it happen.

Given current funding, how far away from robust mouse rejuvenation do you think you are?

My estimate is 5-7 years, but that’s not quite “given current funding”. My overoptimism in saying “10 years” 13 years ago consisted entirely of overoptimism about funding – the science itself has not thrown up any nasty surprises whatsoever – but, nonetheless, I am quite optimistic as of now about funding, simply because the progress we have made has led to a whole new world of startups (including spinoffs from the SENS Research Foundation) and investors, so it’s not only philanthropy anymore. Plus, the increase in overall credibility of the approach is also helping to nurture the philanthropic side. We are still struggling, that’s for sure, but I’m feeling a lot surer that the funding drought’s days are numbered than I felt even two or three years ago.

Robust mouse rejuvenation (RMR) has long been a goal for the SENS Research Foundation, going back to when the SENS approach was initially proposed. RMR was originally outlined as being able to demonstrate and replicate SENS to double the remaining life expectancy of an already aged mouse. This would not mean the first RMR would be a total implementation of all the SENS approaches or that rejuvenation would need to be absolute; it would be a first pass to demonstrate the viability of multiple SENS approaches combined to produce robust results.

Being able to achieve a first-pass RMR could do much to convince academia that the repair approach to aging is plausible and attract more funding and interest in the approach. While RMR working in mice may not sound that exciting, it has huge implications for the field and potentially the rate of funding and progress.

How confident are you still in your previous prediction that humans will be able to control aging by 2029?

I think we’ve slipped a few years, entirely because of lack of funding. The tipping point will be when results in mice convince a critical mass of my curmudgeonly, reputation-protecting expert colleagues that rejuvenation will eventually work, such that they start to feel able to say so publicly. I think that’s on the order of five years away.

We think that the tipping point could well be if senolytics have the same result in humans as they have in mice. Enhanced tissue repair and regeneration in older people would be a very strong case for the repair approach to aging and almost certain to convince the academics sitting on the fence.

Certainly, if AGE breakers could be demonstrated to work in humans, this would also go a long way towards not only convincing academia but also grabbing public interest. Removing AGEs from the skin may potentially reverse wrinkles, for example, and restore skin elasticity, offering a very visual demonstration of repair being plausible.

There is almost certainly going to be a tipping point at which the bulk of academic and public support swings in favour of a repair approach to aging; the only question is when? Well, the sooner the basic science can be done and moved to translational research, the sooner we can all potentially benefit from these technologies. This makes supporting both the research and advocacy of rejuvenation biotechnology very important for progress.

 

About Dr. Aubrey de Grey

Dr. Aubrey de Grey is a biomedical gerontologist based in Cambridge, UK and Mountain View, California, USA, and is the Chief Science Officer of SENS Research Foundation, a California-based 501(c)(3) charity dedicated to combating the aging process. He is also Editor-in-Chief of Rejuvenation Research, the world’s highest-impact peer-reviewed journal focused on intervention in aging. He received his BA and Ph.D. from the University of Cambridge in 1985 and 2000 respectively. His original field was computer science, and he did research in the private sector for six years in the area of software verification before switching to biogerontology in the mid-1990s. His research interests encompass the characterisation of all the accumulating and eventually pathogenic molecular and cellular side-effects of metabolism (“damage”) that constitute mammalian aging and the design of interventions to repair and/or obviate that damage. He has developed a possibly comprehensive plan for such repair, termed Strategies for Engineered Negligible Senescence (SENS), which breaks aging down into seven major classes of damage and identifies detailed approaches to addressing each one. A key aspect of SENS is that it can potentially extend healthy lifespan without limit, even though these repair processes will probably never be perfect, as the repair only needs to approach perfection rapidly enough to keep the overall level of damage below pathogenic levels. Dr. de Grey has termed this required rate of improvement of repair therapies “longevity escape velocity”. Dr. de Grey is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organisations.

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews, and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity Reporter, Psychology Today, and Singularity Weblog. He is a co-author of the book Aging Prevention for All – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.