Browsed by
Tag: NASA

Skyships as Bridges Between Earth and Space – Article by Michael Herschman

Skyships as Bridges Between Earth and Space – Article by Michael Herschman

Michael Herschman


Editor’s Note: The U.S. Transhumanist Party publishes this article by Michael Herschman to illuminate his creative idea for the development of skyships that would act as permanent human habitats and transitional platforms between Earth and space, benefiting the infrastructures and development of both of these realms. The skyship concept echoes the floating structures observed above the Earth and other worlds in the paintings of Robert McCall, and it would be an impressive feat of human progress for them to be brought into concrete reality. 

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, April 17, 2021


Physics evolves, and we can soon expect our advances in engineering. They rarely come, but they never leave. Voices can evolve from turmoil or from excess: People do not often think about science in terms of moral progress… However, there is no holiness of the mind that does not seek happiness. If we choose to look into the sky rather than at the ground, we will find more area for expansion. To a degree, our economy has developed an association with buoyancy. Self-reflection will take you far, but aviation can take you further.

Individuals try to want what is right. Most people never consider human-governed celestial action. NASA, Blue Origin, and SpaceX are influences toward limitless human engineering capacity. To not engage is to hold on… We face gravity as a creative people: Skyscrapers are natural, airplanes are natural, space rockets are natural. Skyships are natural. We need to defy current electronic constraints. It is the natural imperative of every individual to understand according to their capacity the truth of climate change. We see our Earth becoming more and more deceased from carbon. And we use carbon-dioxide-emitting rockets as we leave Earth. By our current standards, the safety and integrity of life on Mars is absurd.

Rendering a sustainable life in the sky is a real and true objective. It is a necessary structure for our next aeronautic epoch. Having a structure between skyscrapers and a space station will bring both closer. Common flying vehicles will proceed from skyship systems and intellectual scaffolding. Its existence will temper its surroundings. And its inhabitants will contribute to society. Everyone on the ship will have the goal of improving life on terrestrial Earth. It is Earth that got them there. They will serve Earth.

Skyships will come about naturally. They are a platform for energy freedoms and personal flight vehicles: so we are guided toward their construction. During the ship’s existence it will help society. Nothing onboard will languish from lack of attention or ability. The ship will be composed of givers that learn and share and provide examples for human structure. The ship will be bound by holistic healthy associations. Craft inhabitants will cure diseases.

We already have airships. A skyship is an airship that can be lived on indefinitely. They will be buoyant and provide protection and can be lived on indefinitely. They will be assisted by fuels and electricity but have no carbon footprint. They are bound to give to society.

Michael Herschman is a writer and poet who wants to learn and relearn STEM, and invent. His Instapoetry and books are available from https://www.whaleshift.com/ and @mkherschman

International Team Publishes Roadmap to Enhance Radioresistance for Space Colonization – Press Release by Biogerontology Research Foundation

International Team Publishes Roadmap to Enhance Radioresistance for Space Colonization – Press Release by Biogerontology Research Foundation

Biogerontology Research Foundation


 

IMAGE: These are ways to reduce health risks from space radiation during deep space travels. Multiple approaches from medical selection of radioresistant individuals to gene therapy may be proposed.

Editor’s Note: Below is a press release by the Biogerontology Research Foundation which features a roadmap to enhance radioresistance for space exploration and colonization, published by an international team of scientists from NASA, Health Canada, Canadian Nuclear Laboratories and many other organizations. This press release was originally published here.

~ Dinorah Delfin, Director of Admissions and Public Relations, U.S. Transhumanist Party, February 22, 2018

An international team of researchers from NASA Ames Research Center, Environmental and Radiation Health Sciences Directorate at Health Canada, Oxford University, Canadian Nuclear Laboratories, Belgian Nuclear Research Centre, Insilico Medicine, the Biogerontology Research Center, Boston University, Johns Hopkins University, University of Lethbridge, Ghent University, Center for Healthy Aging, and many others have published a roadmap toward enhancing human radioresistance for space exploration and colonization in the peer-reviewed journal Oncotarget.

“Our recent manuscript provides a comprehensive review of radioresistance for space radiation. Currently there is minimal research being done for radioresistance against HZE irradiation. The importance of these types of studies will be to reduce the associated health risks for long-term space exploration and allow for the development of potential countermeasures against space radiation. In addition, the synergy between understanding aging with radioresistance will allow for further benefits for humans in long-term space missions and allow for reduced health risk. This review sets the stage for the potential research the scientific community can do to allow for safe long term space exploration” said Afshin Beheshti, an author of the paper and a Bioinformatician at NASA Ames Research Center.

The roadmap outlines future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, the coordination of regenerative and ablative technologies, and methods of slowing metabolic activity while preserving cognitive function. The paper concludes by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

“This paper explores the foreseeable means by which human radioresistance could be biomedically enhanced for the purposes of space exploration and colonization. It also aims to elucidate the links between aging, longevity and radioresistance, and the ways in which research into enhancing human radioresistance could synergistically enable human healthspan extension, ultimately highlighting how ongoing research into the very well-funded sphere of aerospace research could galvanize progress in biomedical gerontology, a massively under-funded area of research despite the grave economic burden posed by demographic aging” said Franco Cortese, an author of the paper and Deputy Director of the Biogerontology Research Foundation.

The publication of the paper in Oncotarget this week is timely, given the test launch of the Falcon Heavy, SpaceX’s largest rocket to date, just last week. Interest into space exploration and even colonisation has been mounting for a number of years. Less than one year ago Elon Musk, CEO of SpaceX, unveiled a roadmap toward colonizing Mars, outlining the ambitious goal of placing a million people on Mars within the next 40 to 100 years. If interest in space colonization continues apace, research into methods of enhancing radioresistance to protect against the various forms of space radiation that spacefarers would be subjected to needs to be accelerated accordingly.

“In linking ageing and radioresistance and tying together research into enhancing the radioresistance of astronauts with the extension of healthy longevity, we hope to have shown how aerospace research could be used to leapfrog the massive funding deficit surrounding the clinical translation of healthspan-extending interventions, in order to brave the storm of the oncoming Silver Tsunami and prevent the looming economic crisis posed by demographic aging” said Dmitry Kaminskiy, an author of the paper and Managing Trustee of the Biogerontology Research Foundation.

The roadmap highlights the need to converge and accelerate research in radiobiology, biogerontology and AI to enable spacefarers to address both the healthcare challenges that we are already aware of, as well as those that we are not.

“Sooner or later we’ll have to do it – leave Earth and wander into deep space. Such travel, taking one or more years outside the Earth’s magnetosphere, would take a high toll on astronauts’ health due to exposure to cosmic radiation. So it’s better to start thinking now about how we are going to cope with that challenge. Luckily, current knowledge from such fields as radiobiology, aging research and biotechnology in general, with the wealth of recent advances in gene editing and regenerative medicine, allow for the drafting of conceptual roadmaps to enhance human resistance to cosmic radiation. This is exactly what this work is all about. It was fun and a pleasure to partake in this theoretical project with such a diverse international team. We were just throwing ideas on the table, some being quite ambitious and futuristic, and then examining them carefully for feasibility and assessing their potential. The work laid out several interesting directions and concepts that can eventually pay off. Last but not least, I think it is also very important to attract widespread attention and interest to this topic” said Dmitry Klokov, an author of the paper and Section Head of the Radiobiology & Health section at Canadian Nuclear Laboratories.

Furthermore, given the massive amount of funding allocated to research into facilitating and optimizing space exploration and optimization, the researchers hope to have shown how research into enhancing radioresistance for space exploration could galvanize progress in human healthspan extension, an area of research that is still massively underfunded despite its potential to prevent the massive economic burden posed by the future healthcare costs associated with demographic aging.

“This roadmap sets the stage for enhancing human biology beyond our natural limits in ways that will confer not only longevity and disease resistance but will be essential for future space exploration” said João Pedro de Magalhães, an author of the paper and a Trustee of the Biogerontology Research Foundation.

###

The paper, entitled “Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization”, can be viewed on Oncotarget here.

Citation: Franco Cortese, Dmitry Klokov, Andreyan Osipov, Jakub Stefaniak, Alexey Moskalev, Jane Schastnaya, Charles Cantor, Alexander Aliper, Polina Mamoshina, Igor Ushakov, Alex Sapetsky, Quentin Vanhaelen, Irina Alchinova, Mikhail Karganov, Olga Kovalchuk, Ruth Wilkins, Andrey Shtemberg, Marjan Moreels, Sarah Baatout, Evgeny Izumchenko, João Pedro de Magalhães, Artem V. Artemov, Sylvain V. Costes, Afshin Beheshti, Xiao Wen Mao, Michael J. Pecaut, Dmitry Kaminskiy, Ivan V. Ozerov, Morten Scheibye-Knudsen and Alex Zhavoronkov. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization, Epub ahead of print. Published online 2018 February 09. doi: 10.18632/oncotarget.24461

About the Biogerontology Research Foundation:

The Biogerontology Research Foundation is a UK non-profit research foundation and public policy center seeking to fill a gap within the research community, whereby the current scientific understanding of the ageing process is not yet being sufficiently exploited to produce effective medical interventions. The BGRF funds and conducts research which, building on the body of knowledge about how ageing happens, aims to develop biotechnological interventions to remediate the molecular and cellular deficits which accumulate with age and which underlie the ill-health of old age. Addressing ageing damage at this most fundamental level will provide an important opportunity to produce the effective, lasting treatments for the diseases and disabilities of ageing, required to improve quality of life in the elderly. The BGRF seeks to use the entire scope of modern biotechnology to attack the changes that take place in the course of ageing, and to address not just the symptoms of age-related diseases but also the mechanisms of those diseases.