Browsed by
Tag: immunotherapy

20 Cutting-Edge Biotechnologies in Development Today – Article by Logan Thrasher Collins

20 Cutting-Edge Biotechnologies in Development Today – Article by Logan Thrasher Collins

Logan Thrasher Collins


I have compiled a list of some of today’s most exciting, cutting-edge biotechnologies! Some of these technologies are emerging, and some of them are already prevalent in a translational context.

1. CRISPR-Cas systems: revolutionary for gene editing, gene therapy, fundamental biology, diagnostics, and more.
2. Gene therapy: enables cures for genetic diseases and powerful treatments for many cancers, may eventually treat polygenic disorders, ameliorate aging, and even enhance human biology (e.g., provide radiation resistance to astronauts). Synergy with CRISPR-Cas technologies will greatly aid gene therapy.
3. DNA origami: paves the way for new nanomedicines, biocatalysts, biosensors, imaging probes, diagnostics, data storage methods, biocomputing, and more.
4. Computational protein engineering: paves the way for new nanomedicines, biocatalysts, biosensors, diagnostics, biomaterials, imaging probes, and more.
5. Immunotherapy: enables cures for many cancers, treatments for autoimmune diseases, and more.
6. Computational protein structure prediction: revolutionizes drug discovery and basic biology, synergizes with computational protein engineering.
7. Spatial transcriptomics: method for interrogation of cell and tissue biology in a holistic and multidimensional fashion to deeply understand health and disease, may lead to dramatic insights on aging, cognition, and pathology.
8. Optogenetics: powerful tool for understanding cellular physiology and neural circuits, may greatly enhance brain-machine interfacing (with the help of gene therapy).
9. Expansion microscopy: physically enlarges biological samples to multiply resolution. Making major strides in connectomics, vastly enhancing study of spatial organization of cells and tissues in general, synergizing with spatial transcriptomics.
10. Longevity medicines: pharmacological, gene therapy, and other methods of treating aging may extend human lifespan and dramatically reduce the prevalence of most aging-related diseases.
11. Bioprinting: produces replacement tissue and may enable manufacturing of replacement organs. Also greatly aids study of tissue biology and provides platforms for drug testing.
12. Organ-on-a-chip systems: may greatly reduce the need for animal models in research, helping to understand organ microenvironments and organ physiology in general, serving as platform for drug testing and discovery.
13. Organoids: may greatly reduce the need for animal models in research, helping to understand organ physiology (especially in context to 3D structure and function), serving as platforms for drug testing and discovery, contributing to understanding of cognition, aiding understanding of developmental biology.
14. Cryo-EM and cryo-ET: rivaling x-ray crystallography for solving high-resolution protein structures and is much easier than x-ray crystallography (especially for certain problematic samples), giving 3D images of cellular environments at sufficient resolution to see some macromolecular structural details, preserves sample integrity better than other methods.
15. Phage therapy: enables versatile and potent treatment of bacterial infections, may save the world from antibiotic resistance.
16. Synchrotron x-ray nanotomography: rapid 3D imaging in one or two colors, may help map brain structure much more rapidly than other methods. This could lead to superior brain-inspired AI and robotics, treatments for brain disease, and whole-brain simulations.
17. Tissue clearing with light-sheet microscopy: facilitates 3D imaging of tissues and even whole organs, leading to much better understanding of biological function, aids connectomics.
18. Predictive systems biology models: transforming vast biological datasets into parameters for large-scale simulations which give valuable insights. Some key examples are kinetic signaling network simulations, molecular dynamics simulations, and biophysical neuronal network simulations.
19. Injectable electronics: minimally invasive method of delivering brain-machine interface hardware, may lead to widespread biomedical and nonmedical adoption of brain-machine interfaces.
20. Minimal cells: may transform understanding of cellular physiology, may act as a superior biomanufacturing platform, may act as a superior platform for cell therapy, and more.
***

Logan Thrasher Collins is a U.S. Transhumanist Party member, futurist, synthetic biologist, author, and innovator. When he was 16, he invented a new antimicrobial protein, OpaL (Overexpressed protein aggregator Lipophilic). He next developed a bacterial conjugation delivery system for the gene encoding OpaL. His synthetic biology research has been published as a first-author journal article in ACS Biochemistry: “Design of a De Novo Aggregating Antimicrobial Peptide and a Bacterial Conjugation-Based Delivery System.” In addition, his synthetic biology research has been recognized at numerous venues including TEDxMileHigh, the Intel International Science and Engineering Fair (ISEF), the International BioGENEius Challenge at the BIO International Convention, and at the American Society for Microbiology General Meeting. At Intel ISEF 2014, his synthetic biology research won 1st place in microbiology and best of category in microbiology ($8,000) as well as the Dudley R. Herschbach award. The latter included a trip to take part in the Nobel Prize ceremonies via the Stockholm International Youth Science Seminar (SIYSS). As part of the honors at Intel ISEF, a minor planet was officially named Logancollins.

As the Chief Technology Officer (CTO) at Conduit Computing, Mr. Collins is leading a supercomputing project which has allowed visualization of how the constituent proteins of SARS-CoV-2 interact inside of cells to build whole viruses.

Visit Logan Thrasher Collins’s website here.

Dr. Aubrey de Grey Accelerates His Estimates – Article by Steve Hill

Dr. Aubrey de Grey Accelerates His Estimates – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill highlights a recent webinar where Dr. Aubrey de Grey, the Biogerontology Advisor of the U.S. Transhumanist Party / Transhuman Party, revised his projections for the arrival of rejuvenation treatments in a more optimistic direction. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party / Transhuman Party, April 16, 2019


On January 28, 2019, we held a webinar with the SENS Research Foundation as part of a new ongoing series of research webinars. During the webinar, we asked Dr. Aubrey de Grey how close we might be to achieving robust mouse rejuvenation (RMR) and robust human rejuvenation, and his answer was somewhat surprising.

RMR is defined as reproducibly trebling the remaining lifespan of naturally long-lived (~3 years average lifespan) mice with therapies begun when they are already two years old.

Dr. de Grey now suggests that there is a 50/50 chance of achieving robust mouse rejuvenation within 3 years from now; recent interviews and conversation reveal that he’d adjusted this figure down from 5-6 years. He has also moved his estimation of this to arrive from around 20 years to 18 years for humans.

So, what is the basis for this advance in schedule? Dr. de Grey is more optimistic about how soon we might see these technologies arrive, as the level of crosstalk between damages appears to be higher than he originally anticipated a decade ago. This means that robust mouse and human rejuvenation may be easier than he previously believed.

We also asked Dr. de Grey which of the seven damages of aging was the most challenging to address. Originally, he thought solving cancer through OncoSENS methods was the biggest challenge in ending age-related diseases. However, intriguingly, he speaks about his enthusiasm for immunotherapy and how it may potentially solve the cancer issue and negate the need for Whole-body Interdiction of Lengthening of Telomeres (WILT), which was always considered a last-resort approach to shutting down cancer.

There are two main components of the WILT approach. The first is to delete telomerase-producing genes from as many cells as possible, as human cancers lengthen telomeres through one of two available pathways, and the second is to avoid the harmful consequences of our cells no longer having telomerase by periodically transplanting fresh stem cells, which have also had their telomerase-associated genes knocked out, to replace losses.

This approach has always been considered extreme, and Dr. de Grey has always acknowledged that this was the case. However, over a decade ago when Dr. de Grey and Michael Rae originally proposed this in the book Ending Aging, immunotherapy was simply not on the radar. Now, there are alternatives to WILT that show true potential and less need for radical solutions, and it is reassuring to see that Dr. de Grey is so enthusiastic about them.

He now suggests that MitoSENS is probably the most challenging to tackle of the seven types of damage in the SENS model of aging. This is no surprise given that DNA and mtDNA damage are highly complex issues to fix.

On that note, we asked Dr. Amutha Boominathan from the MitoSENS team which mitochondrial gene was their next target after they had successfully created nuclear copies of the ATP-6 and ATP-8 genes.

MitoSENS will be launching a new fundraising campaign on Lifespan.io later this year with the aim of raising funds to progress to more of the mitochondrial genes. This time, the aim will be to move the approach to an animal model and demonstrate how it could be used to correct mitochondrial defects.

Finally, if you are interested in getting involved directly with these webinars and joining the live audience, check out the Lifespan Heroes page.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Andrés Grases Interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II on Transhumanism and the Transition to the Next Technological Era

Andrés Grases Interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II on Transhumanism and the Transition to the Next Technological Era

logo_bgGennady Stolyarov II
Andrés Grases


Andrés Grases, the publisher of the Transhuman Plus website (http://transhumanplus.com/) interviews U.S. Transhumanist Party Chairman Gennady Stolyarov II at RAAD Fest 2018 in San Diego, CA, on September 23, 2018. During the course of this conversation, both the contemporary state of transhumanist politics and future directions are covered – along with the challenges to reforming the educational system, the need to create open access to academic works, the manner in which the transition toward the next era of technologies will occur, the meaning of transhumanism and its applications in the proximate future – including promising advances that we can expect to see during the next several years.

Watch the video here.

Become a member of the U.S. Transhumanist Party for free, no matter where you reside. Apply online here in less than a minute.