Browsed by
Tag: global warming

Life Extension, Inequality, and Resource Scarcity: Dealing with Anti-Transhumanist Stereotypes – Article by Sarah Lim

Life Extension, Inequality, and Resource Scarcity: Dealing with Anti-Transhumanist Stereotypes – Article by Sarah Lim

Sarah Lim

One of the most major accusations the transhumanist movement faces is the charge of elitism. Journalists such as Alexander Thomas and Jessica Powell have claimed that the spread of transhumanist ideals could lead to the worsening of already severe income inequality in developed nations such as the U.S. With billionaires like Elon Musk and Peter Thiel being the most prominent investors in the immortality industry, liberal journalists have tended to paint the transhumanist movement as a vain pursuit for the wealthy.

This article is a message to my fellow transhumanists. While these charges might seem unreasonably derisive, we cannot leave them unanswered. It’s easy to dismiss our critics as luddites, “deathists”, or a group of unimaginative bioconservatives who are suffering from sour-grape syndrome. As I keep saying to my friend Hank Pellissier, “you catch more bees with honey than with vinegar.” It may not be wise to alienate our critics by dismissing them as bitter have-nots or bioconservatives who are resistant to technological progress because they can’t imagine the potential benefits of having a triple-digit health span.

Anti-immortalist sentiment

The single greatest charge levied at immortalists is that we are inevitably going to exacerbate the existing problem of overpopulation and resource scarcity. In the last two centuries and a half, the world’s population has grown exponentially. In 1800, the global population stood at 1 billion; as of last year it was 7.6 billion. By the time we’re little way past the Singularity in 2050, the global population is projected to hit 11.2 billion. Most folks and most mainstream scientists argue that a double-digit lifespan is an absolute biological necessity to keep this number from exploding further. This is probably the greatest objection the mainstream public has to radical lifespan extension.

“Privilege” has unfortunately become a very hackneyed word in the last decade, but it’s one that mainstream liberal critics keep on bringing up in their objections of radical lifespan extension. Here comes That Eye Roll-Inducing Statement; in particular, liberal feminist journalists like to criticise that transhumanist movement for “being a movement made for cis straight white upper-middle class men with enough disposable income to benefit from the latest advancements in healthcare.”  Sanjana Varghese at The New Statesman forebodingly warns her readers that “the first men to conquer death will create a new social order – a terrifying one.” Varghese warns that the rich, able-bodied Caucasian men who will be the first to have access to immortality treatments will create a dystopian future where we have Elon living to be 500, while the have-nots live much shorter lives and are forced to deal with a declining global economy and increasingly unaffordable healthcare.

Anyone who isn’t a Tumblr native probably has their pupils in the backs of their skulls right now.

Nevertheless, we can’t let these criticisms go unanswered. We can’t just dismiss them as liberal whinging or bioconservative paranoia. Public intellectuals like Nassim Taleb, John Gray and Leon Kass have gained a lot of media traction for their impassioned criticisms of radical life extension. The perpetuation of the view of transhumanism as an elitist “cis, straight, rich, able-bodied white man’s” game is going to undermine the potential for transhumanism to be taken seriously.

There are ideas, and then there are ideas.

Transhumanists are aware that we are of a minority viewpoint and that we view human exceptionalism differently from both the world’s religious majority and from the mainstream scientific atheist community. We don’t view biological death and the termination of individual consciousness as facts of life that need to be accepted prima facie, and we don’t unquestioningly accept natural biological functions as being sacred and off-limits from deliberate technological alteration. However, we must acknowledge that much more PR work needs to be done to assuage the public’s hostilities towards the transhumanist movement’s long-term goals.

The fact that the transhumanist movement itself even exists is itself remarkable. Our movement is a testament to the resilience of the human spirit and humanity’s inextinguishable desire for perpetual self-improvement, beyond biological determinism. But we must also constantly remind ourselves that radical shifts in social paradigms are long-term goals. Making transhumanism mainstream is going to be a marathon, not a sprint. Our paradise-engineering goals are noble, but we have to be realistic in our approximation of the time it will take to reach them.

Climate change is another hot-button issue closely related to overpopulation. Since the end of last year, scientists have become increasingly pessimistic about humanity’s ability to cope with environmental degradation in the decades to come.

While our individual opinions on this may vary, I applaud Gennady Stolyarov II for making a public statement declaring that the U.S. Transhumanist Party takes climate change seriously, as he states in this article here: “Ideas for Technological Solutions to Destructive Climate Change“. 

Critics of transhumanism, especially liberal journalists and online environmental activists, have often painted transhumanists as having our priorities wrongly arranged. Indefinite biological lifespan extension and cryonics won’t matter if society collapses due to resource scarcity, droughts, tornados, and food shortages, they retort. Again, proposing that the time is now right for biomedical and biotech fields in developed nations to pursue the goals of indefinite lifespan extension can appear to be utterly tone-deaf in the face of the oncoming ecological crisis. And rightly so.

The World Bank estimates that over 200 million people from the sub-Saharan Africa, Latin America, and South Asia could be driven into refugee status by 2045 – which is, coincidentally, Ray Kurzweil’s much-hyped appointed year of the Singularity. To give us an idea of how disruptive this is going to be, says David Wallace-Wells the 2015 Syrian migrant crisis in Europe was the result of just one hundred thousand refugees entering Europe; and look at the unprecedented level of political destabilization that followed it in just a span of 4 years.

Transhumanists cannot forget that the majority of us were lucky enough to be born into relatively favorable circumstances. Most of us live in developed nations, or at least developed cities, away from natural-disaster-prone, pandemic-prone, and conflict-prone areas. If we don’t have diabetes or heart disease and don’t smoke, we can reasonably expect to live until 75 (barring a freak accident). In contrast, the expectancy in some of the least developed parts of Africa is as low as 50 years flat. I was talking to my friend Hank, who runs the Brighter Brains Institute and who does humanitarian work in Kenya, was telling me that he’s often called the “really old man” by the Kenyan children he works with, because anyone who manages to survive past 60 is considered exceptionally long-lived in Kenya.

So what can be done about this?

How can we can dispel the negative stereotypes surrounding transhumanism and radical lifespan extension? The most immediate thing that comes to mind would be more public dialogues and conferences to engage a mainstream audience. The Methuselah Foundation’s CEO David Gobel has publicly stated in a CNBC interview that, “the vast majority of life-extension proponents don’t want things to be expensive,” and would rather make life extension affordable for the majority of the public. A fellow immortalist and Cosmist, Giovanni Santostasi like to use the analogy of mobile phones when they first came out in the 1980s. They were the size of bricks, had minimal connection, and cost a few thousand dollars each; but they became a major status symbol for rich Americans, anyway. Fast forward to 2019; literally everyone and their mother has a cell phone you can text on and take pictures with, i ncluding farmers living in rural Indonesia who are barely above the poverty line. Giovanni is optimistic that radical life extension treatments (and later mind-uploading services) will have a similar trajectory of development.

However, this leads us back to the overpopulation problem. If radical longevity becomes readily affordable to 70% of the public in developed nations, how will the world deal with a further exacerbation of the overpopulation problem? Perhaps what could be done is to hold a public forum specifically dedicated to addressing issues regarding the relationships between transhumanism, resource scarcity, and income inequality. Sociologists, economists, and humanitarian advocates in the transhumanist movement could mobilise to make such a forum a reality soon.

This article is dedicated to my fellow transhumanist humanitarian advocates, Dinorah Delfin and Hank Pellissier.

Disclaimer: If you don’t think that climate change and income inequality are major global concerns, and feel that I’m being a climate alarmist or preachy moralist who’s just delivering holier-than-thou declarations from my soap box, I won’t try to change your mind. If however, you’d like to rationally and politely debate the points I’ve raised in this article, you can PM me at Sarah Chowhugger on Facebook.

Sarah Lim is a fourth-year political science major at the National University of Singapore. She is a proud supporter of the transhumanist movement and aims to do her best to promote transhumanism and progress towards the Singularity.

U.S. Transhumanist Party Public-Service Announcement by Casey Cockrell

U.S. Transhumanist Party Public-Service Announcement by Casey Cockrell


Casey Cockrell

The U.S. Transhumanist Party / Transhuman Party is pleased to feature this public-service announcement created by our member Casey Cockrell. You can view it on YouTube here

You can also share it via the following embed code:

<iframe width=”560″ height=”315″ src=”” frameborder=”0″ allow=”accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> 

Become a member of the U.S. Transhumanist Party for free, no matter where you reside. Apply here in less than a minute.



Ideas for Technological Solutions to Destructive Climate Change – Article by Gennady Stolyarov II

Ideas for Technological Solutions to Destructive Climate Change – Article by Gennady Stolyarov II

Gennady Stolyarov II

Editor’s Note: What follows is a preliminary identification of potential constructive solutions to the problems of deleterious climate change. They are intended for discussion and perhaps eventual incorporation into the U.S. Transhumanist Party Platform, along with other member-generated suggestions, if supported by a vote of the members. At present, though, the priority is to generate and discuss potential effective solutions that do not run into the common pitfalls of Neo-Malthusianism and Neo-Pigovianism, but rather embody the transhumanist Proactionary Principle and remain compatible with continued improvements in the length and quality of human lives. It is our hope that the U.S. Transhumanist Party will eventually emerge at the forefront of generating solutions to the climate-change issue that come to be widely recognized as feasible, effective, and palatable to the majority of people. Accordingly, the list identified in this article is open to revision and expansion in accordance with reader-generated solutions that adhere to the two major constraints specified herein. Both the initially identified potential solutions and these constraints are compatible with the existing related provisions in the Constitution of the U.S. Transhumanist Party (Article III, Sections VIII, IX, X, XI, and XXXVIII), as well as  Article XXII of the Transhumanist Bill of Rights, Version 2.0.

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, August 5, 2018

Destructive climate change is no longer a hypothesis or mere possibility; rather, the empirical evidence for it has become apparent in the form of increasingly frequent extremes of temperature and natural disasters – particularly the ongoing global heat wave and major wildfires occurring in diverse parts of the world. In each individual incident, it is difficult to pinpoint “climate change” as a singular cause, but climate change can be said to exacerbate the frequency and severity of the catastrophes that arise. Residing in Northern Nevada for the past decade has provided me ample empirical evidence of the realities of deleterious climate change. Whereas there were no smoke inundations from California wildfires during the first four summers of my time in Northern Nevada, the next six consecutive summers (2013-2018) were all marked by widespread, persistent inflows of smoke from major wildfires hundreds of kilometers away, so as to render the air quality here unhealthy for long periods of time. From a purely probabilistic standpoint, the probability of this prolonged sequence of recent but consistently recurring smoke inundations would be minuscule in the absence of some significant climate change. Even in the presence of some continued debate over the nature and causes of climate change, the probabilities favor some action to mitigate the evident adverse effects and to rely on the best-available scientific understanding to do so, even with the allowance that the scientific understanding will evolve and hopefully become more refined over time – as good science does. Thus, it is most prudent to accept that there is deleterious climate change and that at least a significant contribution to it comes from emissions of certain gases, such as carbon dioxide and methane, into the atmosphere as a result of particular human activities, the foremost of which is the use of fossil fuels. This is not an indictment of human beings, nor even of fossil fuels per se, but rather an indication that the deleterious side effects of particular activities should be prevented or alleviated through further human activity and ingenuity.

Yet one of the major causes of historical reluctance among laypersons, especially in the United States, to accept the findings of the majority of climate scientists has been the misguided conflation by certain activists (almost always on the political Left) of the justifiable need to prevent or mitigate the effects of climate change with specific policy recommendations that are profoundly counterproductive to that purpose and would only increase the everyday suffering of ordinary people without genuinely alleviating deleterious climate change. The policy recommendations of this sort have historically fallen into two categories: (i) Neo-Malthusian, “back to nature” proposals to restrict the use of advanced technologies and return to more primitive modes of living; and (ii) elaborate economic manipulations, such as the creation of artificial markets in “carbon credits”, or the imposition of a carbon tax or a related form of “Pigovian tax” – ostensibly to associate the “negative externalities” of greenhouse-gas emissions with a tangible cost. The Neo-Malthusian “solutions” would, in part deliberately, cause extreme detriments to most people’s quality of life (for those who remain alive), while simultaneously resulting in the use of older, far more environmentally destructive techniques of energy generation, such as massive deforestation or the combustion of animal byproducts. The Neo-Pigovian economic manipulations ignore how human motives and incentives actually work and are far too indirect and contingent on a variety of assumptions that are virtually never likely to hold in practice. At the same time, the artificially complex structures that these economic manipulations inevitably create would pose obstructions to the direct deployment of more straightforward solutions by entangling such potential solutions in an inextricable web of compliance interdependencies.

The solutions to destructive climate change are ultimately technological and infrastructural.  No single device or tactic – and certainly no tax or prohibition – can comprehensively combat a problem of this magnitude and variety of impacts. However, a suite of technologically oriented approaches – pushing forward the deployment and quality of the arsenal of tools available to humankind – could indeed arrest and perhaps reverse the course of deleterious climate change by directly reducing the emissions of greenhouse gases and/or directly alleviating the consequences of increased climate variability.

Because both human circumstances and current as well as potential technologies are extremely diverse, no list of potential solutions to deleterious climate change can ever be exhaustive. Here I attempt the beginnings of such a list, but I invite others to contribute additional technologically oriented solutions as well. There are only two constraints on the kinds of solutions that can feasibly and ethically combat deleterious climate change – but those constraints are of immense importance:

Constraint 1. The solutions may not result in a net detriment to any individual human’s length or material quality of life.

Constraint 2. The solutions may not involve the prohibition of technologies or the restraint of further technological progress.

Constraint 1 implies that any solution to deleterious climate change will need to be a Pareto-efficient move, in that at least one person should benefit, while no person should suffer a detriment (or at least a detriment that has not been satisfactorily compensated for in that person’s judgment). Constraint 2 implies a techno-optimistic and technoprogressive perspective on combating deleterious climate change: we can do it without restrictions or prohibitions, but rather through innovations that will benefit all humans. Some technologies, particularly those associated with the extraction and use of fossil fuels, may gradually be consigned to obsolescence and irrelevance with this approach, but this will be due to their voluntary abandonment once superior, more advanced technological alternatives become widespread and economical to deploy. The more freedom to innovate and active acceleration of technological progress exist, the sooner that stage of fossil-fuel obsolescence could be reached. In the meantime, some damaging events are unfortunately unavoidable (as are many natural catastrophes more generally in our still insufficiently advanced era), but a variety of approaches can be deployed to at least prevent or reduce some damage that would otherwise arise.

If humanity solves the problems of deleterious climate change, it can only be with the mindset that solutions are indeed achievable, and they are achievable without compromising our progress or standards of living. We must be neither defeatists nor reactionaries, but rather should proactively accelerate the development of emerging technologies to meet this challenge by actualizing the tremendous creative potential our minds have to offer.

What follows is the initial list of potential solutions. Long may it grow.

Direct Technological Innovation

  • Continued development of economical solar and wind power that could compete with fossil fuels on the basis of cost alone.
  • Continued development of electric vehicles and increases in their range, as well as deployment of charging stations throughout all inhabited areas to enable recharging to become as easy as a refueling a gasoline-powered vehicle.
  • Development of in vitro (lab-grown) meat that is biologically identical to currently available meat but does not require actual animals to die. Eventually this could lead the commercial raising of cattle – which contribute significantly to methane emissions – to decline substantially.
  • Development of vertical farming to increase the amount of arable land indoors – rendering more food production largely unaffected by climate change.
  • Autonomous vehicles offered as services by transportation network companies – reducing the need for direct car ownership in urban areas.
  • Development and spread of pest-resistant, drought-resistant genetically modified crops that require less intensive cultivation techniques and less application of spray pesticides, and which can also flourish in less hospitable climates.
  • Construction of hyperloop transit networks among major cities, allowing rapid transit without the pollution generated by most automobile and air travel. Hyperloop networks would also allow for more rapid evacuation from a disaster area.
  • Construction of next-generation, meltdown-proof nuclear-power reactors, including those that utilize the thorium fuel cycle. It is already possible today for most of a country’s electricity to be provided through nuclear power, if only the fear of nuclear energy could be overcome. However, the best way to overcome the fear of nuclear energy is to deploy new technologies that eliminate the risk of meltdown. In addition to this, technologies should be developed to reprocess nuclear waste and to safely re-purpose dismantled nuclear weapons for civilian energy use.
  • Construction of smart infrastructure systems and devices that enable each building to use available energy with the maximum possible benefit and minimum possible waste, while also providing opportunities for the building to generate its own renewable energy whenever possible.
  • In the longer term, development of technologies to capture atmospheric carbon dioxide and export it via spaceships to the Moon and Mars, where it could be released as part of efforts to generate a greenhouse effect and begin terraforming these worlds.

Disaster Response

  • Fire cameras located at prominent vantage points in any area of high fire risk – perhaps linked to automatic alerts to nearby fire departments and sprinkler systems built into the landscape, which might be auto-activated if a sufficiently large fire is detected in the vicinity.
  • Major increases in recruitment of firefighters, with generous pay and strategic construction of outposts in wilderness areas. Broad, paved roads need to lead to the outposts, allowing for heavy equipment to reach the site of a wildfire easily.
  • Development of firefighting robots to accompany human firefighters. The robots would need to be constructed from fire-resistive materials and have means of transporting themselves over rugged terrain (e.g., tank treads).
  • Design and deployment of automated firefighting drones – large autonomous aircraft that could carry substantial amounts of water and/or fire-retardant sprays.

Disaster Prevention

  • Recruitment of large brush-clearing brigades to travel through heavily forested areas – particularly remote and seldom-accessed ones – and clear dead vegetation as well as other wildfire fuels. This work does not require significant training or expertise and so could offer an easy job opportunity for currently unemployed or underemployed individuals. In the event of shortages of human labor, brush-clearing robots could be designed and deployed. The robots could also have the built-in capability to reprocess dead vegetation into commercially usable goods – such as mulch or wood pellets. Think of encountering your friendly maintenance robot when hiking or running on a trail!
  • Proactive creation of fire breaks in wilderness areas – not “controlled burns” (which are, in practice, difficult to control) but rather controlled cuts of smaller, flammable brush to reduce the probability of fire spreading. Larger trees of historic significance should be spared, but with defensible space created around them.
  • Deployment of surveillance drones in forested areas, to detect behaviors such as vandalism or improper precautions around manmade fires – which are often the causes of large wildfires.
  • Construction of large levees throughout coastal regions – protecting lowland areas from flooding and achieving in the United States what has been achieved in the Netherlands over centuries on a smaller scale. Instead of building a wall at the land border, build many walls along the coasts!
  • Construction of vast desalination facilities along ocean coasts. These facilities would take in ocean water, thereby counteracting the effects of rising water levels, then purify the water and transmit it via a massive pipe network throughout the country, including to drought-prone regions. This would mitigating multiple problems, reducing the excess of water in the oceans while replenishing the deficit of water in inland areas.
  • Creation of countrywide irrigation and water-pipeline networks to spread available water and prevent drought wherever it might arise.

Economic Policies

  • Redesign of home insurance policies and disaster-mitigation/recovery grants to allow homeowners who lost their homes to natural disasters to rebuild in different, safer areas.
  • Development of workplace policies to encourage telecommuting and teleconferencing, including through immersive virtual-reality technologies that allow for plausible simulacra of in-person interaction. The majority of business interactions can be performed virtually, eliminating the need for much business-related commuting and travel.
  • Elimination of local and regional monopoly powers of utility companies in order to allow alternative-energy utilities, such as companies specializing in the installation of solar panels, to compete and offer their services to homeowners independently of traditional utilities.
  • Establishment of consumer agencies (public or private) that review products for durability and encourage the construction of devices that lack “planned obsolescence” but rather can be used for decades with largely similar effect.
  • Establishment of easily accessible community repair shops where old devices and household goods can be taken to be repaired or re-purposed instead of being discarded.
  • Abolition of inflexible zoning regulations and overly prescriptive building codes; replacement with a more flexible system that allows a wide variety of innovative construction techniques, including disaster-resistant and sustainable construction methods, tiny homes, homes created from re-purposed materials, and mixed-use residential/commercial developments (which also reduce the need for vehicular commuting).
  • Abolition of sales taxes on energy-efficient consumer goods.
  • Repeal or non-enactment of any mileage-based taxes for electric or hybrid vehicles, thereby resulting in such vehicles becoming incrementally less expensive to operate.
  • Lifting of all bans and restrictions on genetically modified plants and animals – which are a crucial component in adaptation to climate change and in reducing the carbon footprint of agricultural activities.

Harm Mitigation

  • Increases in planned urban vegetation through parks, rooftop gardens, trees planted alongside streets, pedestrian / bicyclist “greenways” lined with vegetation. The additional vegetation can absorb carbon dioxide, reducing the concentrations in the atmosphere.
  • Construction of additional pedestrian / bicyclist “greenways”, which could help reduce the need for vehicular commutes.
  • Construction of always-operational disaster shelters with abundant stockpiles of aid supplies, in order to prevent the delays in deployment of resources that occur during a disaster. When there is no disaster, the shelters could perform other valuable tasks that generally are not conducive to market solutions, such as litter cleanup in public spaces or even offering inexpensive meeting space to various individuals and organizations. (This could also contribute to the disaster shelters largely becoming self-funding in calm times.)
  • Provision of population-wide free courses on disaster preparation and mitigation. The courses could have significant online components as well as in-person components administered by first-aid and disaster-relief organizations.