Browsed by
Tag: clinical trials

Anti-Aging Gene Therapy for Dogs Coming This Fall – Article by Steve Hill

Anti-Aging Gene Therapy for Dogs Coming This Fall – Article by Steve Hill

Steve Hill


Editor’s Note: The U.S. Transhumanist Party features this article by Steve Hill of the Life Extension Advocacy Foundation (LEAF) originally published on the LEAF site on May 8th, 2019.  The article brings attention to a new program that aligns with our mission of ending age-related diseases, which the U.S. Transhumanist Party supports as part of our policy goals.

~ Brent Reitze, Director of Publication, United States Transhumanist Party, May 10th, 2019


In an article last May, we covered how Rejuvenate Bio, a startup biotech company led by Professor George Church, was planning to reverse aging in dogs as a step towards bringing these therapies to us. Those plans are now starting to move forward with news of a trial launch in the fall later this year.

Developing anti-aging therapies in dogs is the first step

Back in 2015, the Church lab at Harvard began testing a variety of therapies focused on age reversal using CRISPR, a gene editing system that was much easier and faster to use than older techniques. Since then, Professor Church and his lab have conducted a myriad of experiments and gathered lots of data with which to plan future strategies for tackling aging.

Last year, we learned that Rejuvenate Bio had already conducted some initial studies with beagles and were planning to reverse aging using CRISPR gene therapy. The goal was to move these studies forward to a larger scale as a step towards bringing similar therapies to humans to prevent age-related diseases. Professor Church was so confident that his team would find a solution, he even suggested that he may be one of the first human volunteers once therapies finally reach people.

“Dogs are a market in and of themselves,” Church said during the 2018 Radical Wellness event in Boston. “It’s not just a big organism close to humans. It’s something that people will pay for, and the FDA process is much faster. We’ll do dog trials, and that’ll be a product, and that’ll pay for scaling up in human trials.”

Choosing to develop therapies for dogs helps pave the way for therapies that address the aging processes in humans and could support their approval, which would otherwise be much more challenging. Currently, if you were to tell the FDA that you want to increase lifespan in humans by 20 years, you would need to come back in 20-30 years with the data, which just isn’t practical.

However, if Rejuvenate Bio can produce robust data in dogs showing that some processes of aging have been reversed, it lends considerable justification for human trials. The company is also taking a different tack; instead of focusing on increasing lifespan, it is instead targeting an age-related disease common in dogs, which should be cured if age reversal occurs.

This is based on the concept that in order to treat age-related diseases and cure them, you need to target the root causes of those diseases, which are the underlying aging processes themselves. If Rejuvenate Bio is successful, this would lend additional supporting evidence that directly treating aging to prevent age-related diseases could also work in humans.

Gene therapy trial for mitral valve disease

Rejuvenate Bio has now announced that it will be launching a gene therapy trial in dogs during the fall this year to combat mitral valve disease (MVD), a condition commonly encountered in the Cavalier King Charles Spaniel breed and directly caused by the aging processes. The study will initially focus on this particular breed and expand to include other dogs with MVD as time passes.

We are developing a novel cardio-protective gene therapy to stop the progression of heart failure in dogs. As a part of the technical development, we will launch a study in dogs with Mitral Valve Disease (MVD) in the fall of 2019. This study will provide valuable information that will aid our effort to address MVD.

MVD is due to the failure of the mitral valve in the heart, a one-way valve between the two chambers of the heart that prevents the backflow of blood as it is pumped around the body. As aging occurs, the mitral valve can degenerate, which allows backflow to occur, leading to left atrial chamber enlargement, congestive heart failure, and, ultimately, death.

This gene therapy is focused on adding a new piece of DNA into the cells of the dogs in order to halt the buildup of fibrotic scar tissue in the heart, which is linked to the progression of MVD and other forms of heart failure. Fibrotic tissue is the result of imperfect repair, which occurs when a more complete repair is not possible due to a lack of replacement cells or high levels of inflammation.

The researchers are keen to point out that this new piece of DNA is not passed onto the offspring of the animal and cannot transfer between dogs. This is because the therapy does not alter the DNA in the germline cells, the cells that are involved in reproduction and passing on genetics to an organism’s offspring.

If you wish to enroll your Cavalier King Charles Spaniel in the trial coming this fall, then register your interest with Rejuvenate Bio to learn more about eligibility and how to apply.

Conclusion

This is a very exciting study and, as the company discusses on its project page, the therapy may also be useful for other heart conditions, such as dilated cardiomyopathy (DCM). If the initial results are successful, it would be highly likely that we could see more dog breeds included as well as other conditions, including DCM, added to the program.

We wish Professor Church and Rejuvenate Bio every success, as this forms the basis for potentially moving such therapies into human trials more quickly as well as potentially helping our furry friends to live longer, healthier lives as well. We love our pets, and it is only logical that we should want the same healthy and longer lives for them as we do for ourselves, and the process for them is the same for us: new medical innovations that target the aging processes directly in order to end age-related diseases.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Finally, Rejuvenation is a Thing! – Fresh Interview with Aubrey de Grey by Ariel VA Feinerman

Finally, Rejuvenation is a Thing! – Fresh Interview with Aubrey de Grey by Ariel VA Feinerman

logo_bg

Ariel VA Feinerman
Aubrey de Grey


This interview was originally published here

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage causes pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previous undamaged — young — state of an organism, we can really rejuvenate it! It sounds very promising, and so it is. And for some types of damage (for example, for senescent cells) it is already proved to work!

Today in our virtual studio, somewhere between cold, rainy Saint-Petersburg and warm, sunny Mountain View, we meet Aubrey de Grey, again! For those of you who are not familiar with him, here is a brief introduction.

Dr Aubrey de Grey is the biomedical gerontologist who researched the idea for and founded SENS Research Foundation. He received his BA in Computer Science and Ph.D. in Biology from the University of Cambridge in 1985 and 2000, respectively. Dr. de Grey is Editor-in-Chief of Rejuvenation Research, is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organizations. In 2011, de Grey inherited roughly $16.5 million on the death of his mother. Of this he assigned $13 million to fund SENS research.

Note: If you have not read “Ending Aging” yet I suggest you to do it as soon as possible, and to be more comfortable with the ideas we are discussing below I highly recommend you to read short introduction to SENS research on their web page. Also if you are interested in recent news and up-to-date reviews about [anti]ageing and rejuvenation research the best place to look for is Fight Aging! blog. Finally, if you are an investor or just curious, I highly encourage you to take a look at Jim Mellon’s book “Juvenescence”.

Interview

Ariel Feinerman: Hello, Dr Aubrey de Grey!

Aubrey de Grey: Hello Ariel — thanks for the interview.

Ariel Feinerman: How do you feel 2018 year? Can you compare 2018 to 2017 or early years? What is changing?

Aubrey de Grey: 2018 was a fantastic year for rejuvenation biotechnology. The main thing that made it special was the explosive growth of the private-sector side of the field — the number of start-up companies, the number of investors, and the scale of investment. Two companies, AgeX Therapeutics and Unity Biotechnology, went public with nine-digit valuations, and a bunch of others are not far behind. Of course this has only been possible because of all the great progress that has been made in the actual science, but one can never predict when that slow, steady progress will reach “critical mass”.

Ariel Feinerman: In 2017 SENS RF have received about $7 million. What has been accomplished in 2018?

Aubrey de Grey: We received almost all of that money right around the end of 2017, in the form of four cryptocurrency donations of $1 million or more, totalling about $6.5 million. We of course realised that this was a one-off windfall, so we didn’t spend it all at once! The main things we have done are to start a major new project at Albert Einstein College of Medicine, focused on stem cell therapy for Alzheimer’s, and to broaden our education initiative to include more senior people. See our website and newsletters for details.

Ariel Feinerman: What breakthroughs of 2018 can you name as the most important by your choice?

Aubrey de Grey: On the science side, well, regarding our funded work I guess I would choose our progress in getting mitochondrial genes to work when relocated to the nucleus. We published a groundbreaking progress report at the end of 2016, but to be honest I was not at all sure that we would be able to build quickly on it. I’m delighted to say that my caution was misplaced, and that we’ve continued to make great advances. The details will be submitted for publication very soon.

Ariel Feinerman: You say that many of rejuvenating therapies will work in clinical trials within five years. Giving that many of them are already working in clinical trials or even in the clinic (like immunotherapiescell and gene therapies) do you mean the first — maybe incomplete — rejuvenation panel, when you speak of early 2020?

Aubrey de Grey: Yes, basically. SENS is a divide-and-conquer approach, so we can view it in three overlapping phases. The first phase is to get the basic concept accepted and moving. The second phase is to get the most challenging components moving. And the third phase is to combine the components. Phase 1 is pretty much done, as you say. Phase 2 is beginning, but it’s at an early stage. Phase 3 will probably not even properly begin for a few more years. That’s why I still think we only have about a 50% chance of getting to longevity escape velocity by 2035 or so.

Ariel Feinerman: Even now many investors are fearful of real regenerative medicine approaches. For example pharmacological companies which use small molecules, like Unity Biotechnology, received more than $300 million, in much more favour than real bioengineering companies like Oisin Biotechnologies, received less than $4 million, even though the biological approach is much more powerful, cheap, effective and safe! Why is this so in your opinion, and when can we see the shift?

Aubrey de Grey: I don’t see a problem there. The big change in mindset that was needed has already occurred: rejuvenation is a thing. It’s natural that small-molecule approaches to rejuvenation will lead the way, because that’s what pharma already knows how to do. Often, that approach will in due course be overtaken by more sophisticated approaches. Sometimes the small molecules will actually work well! It’s all good.

Ariel Feinerman: Do you agree that the small-molecule approach is generally the wrong way in the future rejuvenation therapies? Because they have many flaws — especially their main mechanism via interference with human metabolism. Unlike them SENS bioengineering therapies are designed to be metabolically inert — because they just eliminate the key damage, they do not need to interfere with metabolism, so it is much easier than usual to avoid side effects and interactions with other therapies. They just eliminate the key damage, which means they are easier to develop and test — and much safer.

Aubrey de Grey: Ah, no, that’s too simplistic. It’s not true that small molecules always just “mess with metabolism” whereas genetic and enzymatic approaches eliminate damage. Small molecules that selectively kill senescent cells are absolutely an example of SENS-esque damage repair; the only thing against them is that it may be more difficult to eliminate side-effects, but that’s not because of their mode of action, it’s because of an additional action.

Ariel Feinerman: In recent years many countries gave the green light for regenerative medicine. Fast-track approval in Japan, for example, allows for emerging treatments to be used so long as they have been proven safe. The similar approach works in Russia. What about the EU or USA?

Aubrey de Grey: There’s definitely a long way to go, but the regulatory situation in the West is moving in the right direction. The TAME trial has led the way in articulating an approvable endpoint for clinical trials that is ageing in all but name, and the WHO has found a very well-judged way to incorporate ageing into its classification.

Ariel Feinerman: Do you think of working with USA Army? As far as we know they conduct research on regeneration and are very interested in keeping soldiers healthier for longer. And they have much money!

Aubrey de Grey: The Department of Defense in the USA has certainly funded a lot of high-impact regenerative medicine research for many years. I’m sure they will continue to do so.

Ariel Feinerman: Is any progress in the OncoSENS programme? Have you found any ALT genes? Is any ongoing research in WILT?

Aubrey de Grey: No — in the end that program was not successful enough to continue with, so we stopped it. There is now more interest in ALT in other labs than there was, though, so I’m hopeful that progress will be made. But also, one reason why I felt that it was OK to stop was that cancer immunotherapy is doing so well now. I think there is a significant chance that we won’t need WILT after all, because we will really truly defeat cancer using the immune system.

Ariel Feinerman: Spiegel Lab has recently published an abstract where they say they have found 3 enzymes capable of breaking glucosepane. Very exiting info! When can we hear more on their research? Revel LLC is a very secretive company.

Aubrey de Grey: They aren’t really being secretive, they are just setting up.

Ariel Feinerman: When can we see the first clinical trial of glucosepane breaker therapy?

Aubrey de Grey: I think two years is a reasonable estimate, but that’s a guess.

Ariel Feinerman: What do you think of the Open Source approach in rejuvenation biotechnology? The computer revolution in the early 2000s has taken place only because Open Source caused an explosion in software engineering!

We have many examples when Big Pharma buys a small company which has patents on technology and then cancels all research. In the Open Source approach you cannot “close” any technology, while everyone can contribute, making protocol better and everyone can use that without any licence fee! Anyway, there are countries where you cannot protect your patents. Maybe it will be better to make technology open from the beginning?

Famous biohacker Josiah Zayner said: “In the gene therapy world most treatments are easy to replicate or pirate because you can reverse engineer the DNA from scientific papers or patents. Same exact treatment, same purity and quality I could give to someone rejected from the clinical trial. The cost? Hundreds or a few thousand dollars at most. Same deal with immunotherapy.”

Aubrey de Grey: I think you’ve pretty much answered your own question with that quote. The technologies that will drive rejuvenation are not so easy to suppress.

Ariel Feinerman: Is the SENS RF going to begin new research programmes in 2019?

Aubrey de Grey: Sure! But we are still deciding which ones. We expect that our conference in Berlin (Undoing Aging, March 28–30) will bring some new opportunities to our attention.

Ariel Feinerman: What are your plans for 2019?

Aubrey de Grey: I’d like to say less travelling, but that doesn’t seem very likely at this point. Really my goal is just to keep on keeping on — to do all I can to maintain the growth of the field and the emerging industry.

Ariel Feinerman: Thank you very much for your answers, hope to see you again!

Aubrey de Grey: My pleasure!

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality. If you like Ariel’s work, any help would be appreciated via PayPal: arielfeinerman@gmail.com.

Aubrey de Grey – Clinical Trials in Five Years – Interview by Laura Sanz Olacia

Aubrey de Grey – Clinical Trials in Five Years – Interview by Laura Sanz Olacia

logo_bgLaura Sanz Olacia
Aubrey de Grey


Editor’s Note: In this interview originally published by our allies at the Life Extension Advocacy Foundation (LEAF), Laura Sanz Olacia discusses with Dr. Aubrey de Grey his anticipation that treatments aimed at reversing biological aging may enter clinical trials within five years. The U.S. Transhumanist Party is pleased to feature these insights from Dr. de Grey. 

~ Gennady Stolyarov II, Chairman, United States Transhumanist Party, December 18, 2018

 


In November, Dr. Aubrey de Grey, a graduate of the University of Cambridge, was in Spain to attend the Longevity World Forum in the city of Valencia, and he gave a press conference organized by his friend, MIT engineer José Luis Cordeiro.

Dr. Aubrey de Grey is the scientific director (CSO) and founder of the SENS Research Foundation. In Madrid and Valencia, Dr. de Grey reaffirmed for Tendencias21 one of his most striking statements of 2018: “In the future, there will be many different medicines to reverse aging. In five years, we will have many of them working in early clinical trials.”

The Longevity World Forum is a congress on longevity and genomics in Europe. It is heir to the first congress in Spain, the International Longevity and Cryopreservation Summit, which was held at the CSIC headquarters in Madrid in May 2017, and Dr. de Grey also participated in that event. In Valencia, his presentation was recieved with interest, and Dr. de Grey explained to this select audience that aging will be treated as a medical problem in the near future. Rather than treating its symptoms using the infectious disease model, the root causes of aging will themselves be treated.

It was published recently on longevityworldforum.com that a therapy to reverse aging will be a reality within five years. What will be its mechanism of action, roughly?

There will not be just one medicine; there will be a lot of different medicines, and they will all have different mechanisms of action. For example, some of them will be stem cells, where we put cells back into the body in order to replace cells that the body is not replacing on its own. Sometimes, they will be drugs that kill cells that we don’t want. Sometimes, they will be gene therapy treatments that give cells new capabilities to break down waste products, for example. Sometimes, they will be vaccines or other immune therapies to stimulate the immune system to eliminate certain substances. Many different things. In five years from now, we will probably have most of that working. I do not think that we will really have it perfect by then; probably, we will still be at the early stages of clinical trials in some of these things. Then, we will need to combine them, one by one, to make sure that they do not affect each other negatively. So, there will still be some way to go. But, yes, I think it’s quite likely that in five years from now, we will have everything, or almost everything, in clinical trials.

Then clinical trials for seven years until it’s perfected. Don’t clinical trials usually take a long time?

It depends. For example, in aging, because there is this progressive accumulation of damage, you could have therapies that slow down the rate at which damage accumulates, or you could have therapies that repair the damage that has already happened. The second type of therapy is what we think is going to be most effective and is going to be easiest to do, and you can see results from that very quickly, like in one or two years. Now, of course, you still want to know what happens later on, but the first thing is to determine whether this is working at all, and as soon as it starts to work, then you can start to make it available. Clinical trials are changing in that way. Historically, clinical trials had to be completed before anybody could get these drugs, but now we are getting new policies; there is a thing called adaptive licensing, which is becoming popular in the US and elsewhere, where the therapy becomes approved at an earlier stage, and then it’s monitored after that.

Beyond the humanitarian perspective of avoiding the pain and suffering that comes with old age, if increasing the years of healthy life in people will significantly reduce health care spending by governments, why don’t they promote research in this area?

You’re absolutely right. It’s quite strange that governments are so short-sighted. But, of course, the real problem is psychological: it’s not just governments that are short-sighted. Almost everybody in the world is short-sighted about this. The reason I believe why that’s true is people still can’t quite convince themselves that it’s going to happen. Since the beginning of civilization, we have known that there is this terrible thing called aging, and we have been desperate to do something about it, to get rid of it. And people have been coming along, ever since the beginning of civilization, saying, “Yes, here’s the solution, here’s the fountain of youth!” And they’ve always been wrong. So, when the next person comes along and says they think they know how to do it, of course, there is going to be some skepticism until they have really shown that it’s true. Of course, if you don’t think it’s going to work, then you’re not going to support the effort financially. It’s very short-sighted, but it’s understandable.

Why do you think that the pharmaceutical industry does not devote its research and development efforts to this area, which causes the death of 100,000 people every day?

Today, the pharmaceutical industry is geared toward keeping old people alive when they are sick. It makes its money that way. It’s not just the pharmaceutical industry, it’s the whole of the medical industry. And so, most people say that they are worried that maybe the pharmaceutical industry will be against these therapies when they do come along. I don’t think that’s true at all. I think they will be in favor because people will be in favor, but people are not really in favor yet. People don’t really trust preventive medicine. They think “Okay if I am not yet sick…” They don’t trust medicine in general; they know that this is experimental. So, when they are not yet sick, they think “Well, I’ll wait until I am sick,” but we can change that. Eventually, people will understand that it’s going to be much more effective to treat yourself before you get sick, and then the whole medical industry will just respond to that; they will make the medicines that people want to pay for.

So you don’t think that they will be against these therapies?

No. They will follow.

But now, they are not focusing their research into this field.

That’s right because they don’t need to. The big pharmaceutical companies don’t really do much of their own research in the first place. They just wait to see what happens, and then they buy small companies.

In the car analogy that you use, you say that a car is built to last 10 or 15 years, but with proper maintenance, it can last up to 100 years. Isn’t this expressing the idea that aging is programmed and that the life of a car is also programmed?

No, it’s not. All of you know that, a long time ago, Henry Ford invented a concept called planned obsolescence, which was a way of building a car so that you could predict pretty accurately how long it would last. But, of course, the only reason that the prediction works is because people are lazy, and they don’t mind replacing their cars, so they only do the minimum amount of maintenance that the law tells them to. The reason that some cars last 100 years is not because those cars were built differently, it’s because there are a few people out there who fall in love with their cars and they don’t want them to get old. So, it really is exactly the same. In the human body, we have aging, because there are certain types of damage that are not automatically repaired when they happen. Of course, many types of damage in the human body are repaired automatically when they happen, so we don’t need medicine for that, but some of them are not. So, if we can develop medicines that do fix those things, it’s exactly the same as with a car.

If aging is not programmed, why do different species have different lifespans?

Because they have different qualities of built-in repair machinery. When I talk about all these types of damage, they are the types of damage that accumulate in the body, and they accumulate because the body does not have ways to repair them. There are massive amounts of other types of damage that I don’t call damage, and the reason I don’t call them damage is because they don’t accumulate. The reason that they don’t accumulate is because we already have built-in machinery to repair them when they happen. So, long-lived species have more comprehensive automatic repair machinery built into them.

Do you think that first we can focus on just replacing organs and restoring their function, and eventually we can eliminate the root causes of aging? Once we reach longevity escape velocity, maybe we can focus on just eliminating it?

We will never be able to stop the body from creating this damage. The body is going to do that because it is intrinsic to metabolism, but the better we get at repairing the damage, the fewer problems we have.

What healthy habits do you follow now?

I don’t do healthy habits. I’m lucky, I don’t need to do anything; I can drink whatever I like and nothing happens. I don’t even do much exercise, and also I don’t get nearly enough sleep, which is probably shortening my life, but it is worth it because I am hastening the defeat of aging, so it is a net positive.

Which generation will live to be a thousand years old? Do you think it is born already?

I think it is very probably born already, yes. But, of course, we cannot know until we get the medicines.

Which country do you think is more aware, or the people is more aware that this is a problem that we need to fix?

I would say Russia.

Russia?

Yeah. Surprising, isn’t it? But when I go to Russia and I talk about all of this, it’s so wonderful; I don’t get any of the uninformed questions, and everyone seems to understand it.

They don’t ask you ethical questions?

That’s right, yeah. They understand that this is a medical problem, it needs to be fixed, and it can be fixed.

Kriorus [the first and only cryonics company in Eurasia] is there right?

Yeah, I know Kriorus, I know the people very well.

Alcor [the world leader in cryonics located in Arizona] is the most expensive.

It gives the best service. I mean, it makes sense to have a very expensive, high-quality service and also less expensive and lower quality service. That is normal.

Where are you currently living?

I live in the United States, but I go everywhere when I am invited to speak and so on.

Laura Sanz Olacia, has a degree in Pharmacy from the Complutense University of Madrid (2015). Between 2016 and 2017 she worked for nine months in different pharmacies in London. She also worked in a pharmacy laboratory compounding medicines and cosmetics in Madrid. More recently she worked in IQVIA as Data Management Analyst. She is very interested in research and, in particular, in the area of ​aging. During her stay in London, she participated in the organization of the Antiaging Conference London 2016, and back in Madrid, she collaborated closely with the organizing committee of the International Longevity and Cryopreservation Summit 2017. She wants to devote her career to doing research in this field.

The New Way of BioViva – Interview with Liz Parrish by Ariel VA Feinerman

The New Way of BioViva – Interview with Liz Parrish by Ariel VA Feinerman

Ariel VA Feinerman
Elizabeth Parrish


Interview with Liz Parrish, CEO of BioViva

Liz Parrish, CEO of BioViva

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage causes pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previously undamaged — young — state of an organism, we can really rejuvenate it! Sounds very promising, and so it is. And for some types of damage (for example, for senescent cells), it is already proved to work!

Today in our virtual studio somewhere between Saint-Petersburg and Seattle, we meet a famous person! Elizabeth Parrish, CEO of BioViva, is a humanitarian, entrepreneur, innovator, and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of regenerative medicine modalities, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and is a founding member of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA), which is a unique platform for Mensa-based, highly gifted persons who advance scientific discourse and discovery.

The mission of the CBSA is to further scientific understanding of biological complexity and the nature and origins of human disease. She is the founder of BioTrove Investments LLC and the BioTrove Podcasts, which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine.

Interview

Ariel Feinerman: Hello, Ms. Liz Parrish!

Liz Parrish: Hello, Ariel Feinerman!

Ariel Feinerman: Honestly, I have planned to offer you the idea of building the whole infrastructure for delivering therapies from manufacturers via clinics to the patients. Because we really need such an infrastructure! By the way, when I looked at BioViva web page, I could see that you already do that! Very nice surprise for all. Can you say, when and why you realised that making therapy is not enough and that to build a viable alternative to the usual regulatory path, we need such a platform and a whole parallel infrastructure?

Liz Parrish: I realized that quite early in my journey, but it took us a while to organize the right team, and our collaborations.

Ariel Feinerman: How optimistic are you that other companies will follow your way?

Liz Parrish: Very. We think that the anti-ageing and regenerative market with growing at a compound annual growth rate (CAGR) of over 8.4% over the next 5 years, and the total market valuation will reach approximately $500 billion by 2022. We have no doubt that this will encourage many companies all over the world to find innovative ways to capture market share by providing unprecedented value to customers. We hope those companies will use our platform and we can use our years of experience to assist them.

Ariel Feinerman: We already have many amazing results in the lab which can save human lives just now, but lack of funding and the over-regulated medical system don’t give them any chance to be in clinics in coming years. With the current pace of progress, they will already be outdated even before clinical trials. Do you think that translational research becomes the bottleneck?

Liz Parrish: Yes and no. Part of the the bench-to-bedside translational process needs to be expedited, whilst other parts need better oversight, and due-diligence, and yet other parts of the process need to be built from the ground up. BioViva is collaborating with biotech companies, researchers, clinicians, and regulators to put together all these pieces of the translational puzzle in the right place at the right time for the right set of patients to benefit.

Ariel Feinerman: What therapies do you offer now?

Liz Parrish: BioViva doesn’t offer any therapies. We partner with clinics, and other companies, including Integrated Health Systems (IHS), that offer patients treatments in various places in the world. Please contact IHS to receive their treatment details for patients.

Ariel Feinerman: As far as I remember, BioViva worked on telomerase earlier. Does your company work on any therapy now?

Liz Parrish: Our company partnered with Integrated Health Systems (IHS) earlier this year. Our partner company offers treatments in various parts of the world, while BioViva collects and analyses patient data.

Ariel Feinerman: What are your requirements for a bioengineering company that wishes to use your program? How do you ensure that their therapy is safe and effective?

Liz Parrish: We are not a body-hacking or bioengineering company. We collect data from treatments offered at clinics selected by our partner company mentioned above. IHS demands that the clinics conform to their countries’ regulations and medical personnel involved have adequate training, as well as high standards of hygiene and equipment. IHS only works with clinics that have an excellent reputation. US-trained doctors also regularly inspect clinics working for IHS to ensure that standards are maintained.

Ariel Feinerman: I mean can you say how your platform works?

Liz Parrish: Our company business is done by contract. Unfortunately I cannot elaborate on this point because it is not public information. Our goal, when setting up our platform, is to speed up regulation by getting as much early human data as possible that will hopefully make cutting-edge technologies available to those who need them as soon as possible. Ageing kills 100,000 people a day, so we cannot humanely afford to drag our feet; we must get treatments out as soon as they are available.

Ariel Feinerman: Investors usually fear uncertainty which follows companies who choose any alternative to the mainstream regulatory way. Is this improving? How do you solve this problem? Do you help bioengineering companies to look for loyal investors?

Liz Parrish: Any investment in new methods is risky. No risk, no gain. Medicine cannot progress if no one is prepared to take a risk. This applies as much to investors as to patients. Recently however we notice a trend in favour of investments that would have been considered high-risk five years ago but that today are regarded rather as medium-risk. The reason is the increase in computer capacity which in turn allows for more data and therefore for more data analysis. When it comes to data, more is synonymous with better. Lots of data allow investors to better predict the returns on their investments, so more money is invested in endeavours involving lots of data.

Ariel Feinerman: Dr. Aubrey de Grey has said: “I think the key thing we should be doing more of is making better use of those who choose to go abroad to get treated: we should make it as easy as possible for them to report on what treatment they received and how well it worked, any side-effects, etc., for a long time after the treatment, so that such information can be analysed and used to guide future research. The people who provide experimental therapies don’t have any incentive to gather such data themselves, so it usually never gets gathered.”

Do you or your partner clinics gather such information or follow your patients?

Liz Parrish: As I said above, BioViva’s task is the collection and treatment of data. This is what we do. We collect data before and at the time of the treatment, and then at various times after the therapy. We hope to gather much data from each patient we treat, and to gather much data from many, many patients. This is the only way to assess if a treatment works, whom it works for, after how long, how many times, etc.

Ariel Feinerman: Some people express concern that many therapies via medical tourism will be available only for small groups of people, because of lack of information, need to go abroad, lack of established clinic networks, and so on. What can you argue? How can you plan to make them more available?

Liz Parrish: All novel therapies are expensive because the R&D enabling them is still ongoing. The small group of people who can afford them are benefiting from what at the time of their treatment is cutting-edge medicine, but they are simultaneously funding the R&D that will assess these therapies, and later make them affordable to a larger number of people. This is just as true of organ transplants or surgical bypass, now routine but once unaffordable to most, as it is of gene therapy.

The fact that a treatment takes place abroad does not necessarily imply lack of information. All clinics proposed by IHS have websites with detailed information about their facilities. IHS is the clinical network, that hitherto has been lacking, which will connect patients needing treatment to clinics all over the world, one or two of which may have just the treatment a certain patient requires.

For sure, there is less information about the clinical results of some of the treatments they propose, and how could it be otherwise? Those treatments are pioneering, and therefore off the beaten track in novel territory. This novel territory requires patients to explore it, provide data for BioViva to analyse and in this way make the new treatments available to more people.

Ariel Feinerman: Thank you very much for your answers, hope to see you again!

Liz Parrish: Thanks you, it was my pleasure.

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality.

Message from Ariel VA Feinerman: If you like my work, any help will be appreciated!

PayPal: arielfeinerman@gmail.com

Bitcoin: 1Gz5ebAyPmM9vNAAgpmeX7G3rtKMyWEjb1

Ether: 0x4752d8a8615Cdf48E220f9dbb48654C7791716ee

Bitcoin Cash: qzh427szlnfyk2k6v547gkpjvafnmzgk35hzagzs82

New Clinical Study May Be the World’s First Cure for Alzheimer’s Disease – Press Release from Libella Gene Therapeutics

New Clinical Study May Be the World’s First Cure for Alzheimer’s Disease – Press Release from Libella Gene Therapeutics

logo_bg

Libella Gene Therapeutics


ORLANDO, Fla.Jan. 10, 2018 /PRNewswire/ — Libella Gene Therapeutics LLC will conduct an OUS (outside the United States) clinical trial in Cartagena, Colombia, using gene therapy to reverse age-related diseases, starting with Alzheimer’s. Unlike traditional drugs, which tend to be taken for months or years at a time, gene therapy interventions are intended to be one-off treatments that tackle a disease at its source, repairing faulty DNA and allowing the body to fix itself.

Every day 228 Americans die from Alzheimer’s disease, and there is currently no known treatment or cure. Gene therapy offers the ability to permanently correct a disease at its most basic level, the genome, and could offer cures for many conditions that are currently considered incurable. According to Dr. Bill Andrews, the scientist leading the study, “Human telomerase reverse transcriptase (hTERT) is an enzyme whose expression plays a role in cellular aging and is normally repressed in cells, resulting in progressive shortening of telomeres. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer.”

By inducing telomerase, Dr. Andrews and Libella Gene Therapeutics hope to lengthen telomeres in the body’s cells. The clinical trial will treat a limited number of patients using the gene therapy treatment, which has been demonstrated as safe, with minimal adverse reactions in over 186 clinical trials.

Dr. Andrews has been featured in Popular Science, on the “Today” show and in numerous documentaries on the topic of life extension. As one of the principal discoverers of both the RNA and protein components of human telomerase, Dr. Andrews was awarded second place as “National Inventor of the Year” in 1997. He earned a Ph.D. in molecular and population genetics at the University of Georgia in 1981. He has served in multiple senior science and technology roles at leading bioscience corporations. Dr. Andrews is a named inventor on over 50 U.S.-issued patents on telomerase and is the author of numerous scientific research studies published in peer-reviewed scientific journals.

On why the company decided to conduct its clinical research project outside the United States, Libella Gene Therapeutics president Dr. Jeff Mathis said, “Traditional clinical trials in the U.S. can take years and millions — or even billions — of dollars. The research and techniques that have been proven to work are ready now. We believe we have the scientist, the technology, the physicians, and the lab partners that are necessary to get this trial done faster in Colombia.”

The clinical trial is prepping to begin in the first quarter of 2018 and will be conducted at MediHelp Services Clinic in beautiful and tourist-friendly Cartagena, Colombia. The state-of-the-art facility has hosted international public figures including athletes, celebrities and politicians. Dr. Javier Hernandez, MediHelp’s medical director, will oversee the trial.

Colombia’s clinical research regulation is friendly to gene therapy trials, with one of the fastest approval times in Latin America for this kind of research. The trial’s clinical study design; regulatory, operation and logistical support; project management; statistical analysis; and study monitoring services will be provided by LATAM Market Access Inc., a Florida-based clinical research company.

About Libella Gene Therapeutics LLC 
With a mission to reverse aging and cure all age-related diseasesstarting with Alzheimer’sLibella Gene Therapeutics has exclusively licensed the AAV Reverse (hTERT) transcriptase enzyme technology from Sierra Sciences and Dr. Bill Andrews. More information at www.libellagenetherapeutics.com.

About LATAM Market Access Inc.
Dedicated to helping innovative life science companies gather cost-effective clinical data at leading research institutions, the company provides clinical study design; regulatory, operational and logistics support; project management; statistical analysis; and study monitoring services. More information at www.latammarketaccess.com.

 

Stem-Cell Clinical Trials Show Remarkable Results Against Age-Related Frailty – Article by Steve Hill

Stem-Cell Clinical Trials Show Remarkable Results Against Age-Related Frailty – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill discusses two very promising human clinical trials using stem cell therapy for age-related frailty. This article was originally published by the Life Extension Advocacy Foundation (LEAF) .

~ Kenneth Alum, Director of Publication, U.S. Transhumanist Party, October 29, 2017

The first results of two human clinical trials using stem cell therapy for age-related frailty have been published, and the results are very impressive indeed. The studies show that the approach used is effective in tackling multiple key age-related factors.

Aging research has made significant progress in the last few years, with senescent-cell-clearing therapies entering human trials this year, DNA repair in human trials, and a number of other exciting therapies nearing human testing. We are reaching the point where therapies that target aging processes are no longer a matter of speculation; they are now an undeniable matter of fact.

What are mesenchymal stem cells?

Mesenchymal stem cells (MSCs) are one of the most commonly used types of stem cells in therapy. MSCs are adult stem cells that can become other types of cells, depending on stimulus; this ability to become a variety of other cell types is known as multipotency. [1]

The cells into which MSCs can transform (differentiate) include osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells), and adipocytes (fat cells). MSCs are of great interest to aging researchers and are arguably one of the most well studied and understood types of stem cells. [2]

MSCs are currently in various trials to treat conditions such as cancer, heart disease, and arthritis. [3] The potential of MSCs for treating neurodegenerative diseases, such as Alzheimer’s, are also being explored in preclinical testing. [4-5]

A therapy for age-related frailty

The focus of the MSC therapy in the case of these two clinical trials is to reduce the effects of age-related frailty on senior citizens. This also marks an important step for rejuvenation biotechnology, as this is the first stem-cell treatment that is close to final FDA approval for specifically targeting age-related frailty. Should this be approved, then it opens the door for other similar approaches and the potential treatment of many age-related diseases.

The therapy itself uses MSCs taken from adult donor bone marrow and is infused into patients with an average age of 76 years old. The good news is that patients in both the phase 1 and phase 2 clinical trials have shown no adverse effects to treatment.

This is excellent news and now paves the way to move to phase 3 clinical trials, which are larger-scale tests to further determine the efficacy and compare it to the best currently available treatments, for which there are basically none beyond simple coping approaches, such as walking sticks and frames to compensate for frailty.

It is also important to note that at this at this point, the drug or therapy is accepted as having some effect. You can read more about the clinical trial process and what each phase means here.

In the first trial, 15 patients with age-related frailty were given a single transplant of MSCs from donors aged between 20 and 45. [6] Six months later, all patients in the trial showed an improved level of fitness, lower levels of inflammatory tumor necrosis factor (TNF), and improved quality of life in general. TNF is one of the regulators of inflammation and contributes to the chronic age-related inflammation known as “inflammaging”, which drives a number of age-related diseases. [7]

The second trial was a randomized, double-blind study including a placebo group. An improved physical performance level was observed in patients, and, again, the level of systemic TNF, and thus inflammation, was reduced. [8] Once again, there were no adverse effects observed in the patients, and the researchers wrote:

Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome.

David G. Le Couter and colleagues have written about the clinical trials in a guest editorial in The Journals of Gerontology:

There are always caveats associated with interpreting efficacy in small numbers of subjects, yet it is remarkable that a single treatment seems to have generated improvement in key features of frailty that are sustained for many months.

The next step for the researchers here is to begin a phase 2b clinical trial with 120 patients in ten different locations. Following the conclusion of this, a large randomized phase 3 trial will be launched, and this will be the final barrier to public approval for the therapy.

Conclusion

With an ever-increasing number of aged people in our population, stem cells hold great potential for treating a number of age-related diseases and combating the disability and frailty that accompany the aging process. Developing therapies like these could potentially help older people to enjoy an improved level of physical performance and a better quality of life. Being able to remain mobile and independent as we grow older would be of huge benefit to not only the individual but also to families and society as a whole.

There are currently no FDA-approved treatments for age-related frailty, so this represents a huge unmet need that will only worsen with an increasingly aging population if those needs are not met by new medicines.

Seeing such tangible results in humans is a clear indication of the potential of rejuvenation biotechnology, and how we regard and treat aging will be changing in the near future.

Literature

[1] Nardi, N. B., & da Silva Meirelles, L. (2008). Mesenchymal stem cells: isolation, in vitro expansion and characterization. In Stem cells (pp. 249-282). Springer Berlin Heidelberg.

[2] Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of ageing and development, 129(3), 163-173.

[3] Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of hematology & oncology, 5(1), 19.

[4] Danielyan, L., Beer-Hammer, S., Stolzing, A., Schäfer, R., Siegel, G., Fabian, C., … & Novakovic, A. (2014). Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell transplantation, 23(1), S123-S139.

[5] Naaldijk, Y., Jaeger, C., Fabian, C., Leovsky, C., Blüher, A., Rudolph, L., … & Stolzing, A. (2017). Effect of systemic transplantation of bone marrow‐derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathology and applied neurobiology, 43(4), 299-314.

[6] Golpanian, S., DiFede, D. L., Khan, A., Schulman, I. H., Landin, A. M., Tompkins, B. A., … & Levis-Dusseau, S. (2017). Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, glx056.

[7] Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘Garb-aging’. Trends in Endocrinology & Metabolism, 28(3), 199-212.

[8] Tompkins, B. A., DiFede, D. L., Khan, A., Landin, A. M., Schulman, I. H., Pujol, M. V., … & Mushtaq, M. (2017). Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72(11), 1513-1522.

 

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews, and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity Reporter, Psychology Today, and Singularity Weblog. He is a co-author of the book Aging Prevention for All – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.