Browsed by
Tag: clinical trials

The New Way of BioViva – Interview with Liz Parrish by Ariel VA Feinerman

The New Way of BioViva – Interview with Liz Parrish by Ariel VA Feinerman

Ariel VA Feinerman
Elizabeth Parrish


Interview with Liz Parrish, CEO of BioViva

Liz Parrish, CEO of BioViva

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage causes pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previously undamaged — young — state of an organism, we can really rejuvenate it! Sounds very promising, and so it is. And for some types of damage (for example, for senescent cells), it is already proved to work!

Today in our virtual studio somewhere between Saint-Petersburg and Seattle, we meet a famous person! Elizabeth Parrish, CEO of BioViva, is a humanitarian, entrepreneur, innovator, and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of regenerative medicine modalities, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and is a founding member of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA), which is a unique platform for Mensa-based, highly gifted persons who advance scientific discourse and discovery.

The mission of the CBSA is to further scientific understanding of biological complexity and the nature and origins of human disease. She is the founder of BioTrove Investments LLC and the BioTrove Podcasts, which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine.

Interview

Ariel Feinerman: Hello, Ms. Liz Parrish!

Liz Parrish: Hello, Ariel Feinerman!

Ariel Feinerman: Honestly, I have planned to offer you the idea of building the whole infrastructure for delivering therapies from manufacturers via clinics to the patients. Because we really need such an infrastructure! By the way, when I looked at BioViva web page, I could see that you already do that! Very nice surprise for all. Can you say, when and why you realised that making therapy is not enough and that to build a viable alternative to the usual regulatory path, we need such a platform and a whole parallel infrastructure?

Liz Parrish: I realized that quite early in my journey, but it took us a while to organize the right team, and our collaborations.

Ariel Feinerman: How optimistic are you that other companies will follow your way?

Liz Parrish: Very. We think that the anti-ageing and regenerative market with growing at a compound annual growth rate (CAGR) of over 8.4% over the next 5 years, and the total market valuation will reach approximately $500 billion by 2022. We have no doubt that this will encourage many companies all over the world to find innovative ways to capture market share by providing unprecedented value to customers. We hope those companies will use our platform and we can use our years of experience to assist them.

Ariel Feinerman: We already have many amazing results in the lab which can save human lives just now, but lack of funding and the over-regulated medical system don’t give them any chance to be in clinics in coming years. With the current pace of progress, they will already be outdated even before clinical trials. Do you think that translational research becomes the bottleneck?

Liz Parrish: Yes and no. Part of the the bench-to-bedside translational process needs to be expedited, whilst other parts need better oversight, and due-diligence, and yet other parts of the process need to be built from the ground up. BioViva is collaborating with biotech companies, researchers, clinicians, and regulators to put together all these pieces of the translational puzzle in the right place at the right time for the right set of patients to benefit.

Ariel Feinerman: What therapies do you offer now?

Liz Parrish: BioViva doesn’t offer any therapies. We partner with clinics, and other companies, including Integrated Health Systems (IHS), that offer patients treatments in various places in the world. Please contact IHS to receive their treatment details for patients.

Ariel Feinerman: As far as I remember, BioViva worked on telomerase earlier. Does your company work on any therapy now?

Liz Parrish: Our company partnered with Integrated Health Systems (IHS) earlier this year. Our partner company offers treatments in various parts of the world, while BioViva collects and analyses patient data.

Ariel Feinerman: What are your requirements for a bioengineering company that wishes to use your program? How do you ensure that their therapy is safe and effective?

Liz Parrish: We are not a body-hacking or bioengineering company. We collect data from treatments offered at clinics selected by our partner company mentioned above. IHS demands that the clinics conform to their countries’ regulations and medical personnel involved have adequate training, as well as high standards of hygiene and equipment. IHS only works with clinics that have an excellent reputation. US-trained doctors also regularly inspect clinics working for IHS to ensure that standards are maintained.

Ariel Feinerman: I mean can you say how your platform works?

Liz Parrish: Our company business is done by contract. Unfortunately I cannot elaborate on this point because it is not public information. Our goal, when setting up our platform, is to speed up regulation by getting as much early human data as possible that will hopefully make cutting-edge technologies available to those who need them as soon as possible. Ageing kills 100,000 people a day, so we cannot humanely afford to drag our feet; we must get treatments out as soon as they are available.

Ariel Feinerman: Investors usually fear uncertainty which follows companies who choose any alternative to the mainstream regulatory way. Is this improving? How do you solve this problem? Do you help bioengineering companies to look for loyal investors?

Liz Parrish: Any investment in new methods is risky. No risk, no gain. Medicine cannot progress if no one is prepared to take a risk. This applies as much to investors as to patients. Recently however we notice a trend in favour of investments that would have been considered high-risk five years ago but that today are regarded rather as medium-risk. The reason is the increase in computer capacity which in turn allows for more data and therefore for more data analysis. When it comes to data, more is synonymous with better. Lots of data allow investors to better predict the returns on their investments, so more money is invested in endeavours involving lots of data.

Ariel Feinerman: Dr. Aubrey de Grey has said: “I think the key thing we should be doing more of is making better use of those who choose to go abroad to get treated: we should make it as easy as possible for them to report on what treatment they received and how well it worked, any side-effects, etc., for a long time after the treatment, so that such information can be analysed and used to guide future research. The people who provide experimental therapies don’t have any incentive to gather such data themselves, so it usually never gets gathered.”

Do you or your partner clinics gather such information or follow your patients?

Liz Parrish: As I said above, BioViva’s task is the collection and treatment of data. This is what we do. We collect data before and at the time of the treatment, and then at various times after the therapy. We hope to gather much data from each patient we treat, and to gather much data from many, many patients. This is the only way to assess if a treatment works, whom it works for, after how long, how many times, etc.

Ariel Feinerman: Some people express concern that many therapies via medical tourism will be available only for small groups of people, because of lack of information, need to go abroad, lack of established clinic networks, and so on. What can you argue? How can you plan to make them more available?

Liz Parrish: All novel therapies are expensive because the R&D enabling them is still ongoing. The small group of people who can afford them are benefiting from what at the time of their treatment is cutting-edge medicine, but they are simultaneously funding the R&D that will assess these therapies, and later make them affordable to a larger number of people. This is just as true of organ transplants or surgical bypass, now routine but once unaffordable to most, as it is of gene therapy.

The fact that a treatment takes place abroad does not necessarily imply lack of information. All clinics proposed by IHS have websites with detailed information about their facilities. IHS is the clinical network, that hitherto has been lacking, which will connect patients needing treatment to clinics all over the world, one or two of which may have just the treatment a certain patient requires.

For sure, there is less information about the clinical results of some of the treatments they propose, and how could it be otherwise? Those treatments are pioneering, and therefore off the beaten track in novel territory. This novel territory requires patients to explore it, provide data for BioViva to analyse and in this way make the new treatments available to more people.

Ariel Feinerman: Thank you very much for your answers, hope to see you again!

Liz Parrish: Thanks you, it was my pleasure.

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality.

Message from Ariel VA Feinerman: If you like my work, any help will be appreciated!

PayPal: arielfeinerman@gmail.com

Bitcoin: 1Gz5ebAyPmM9vNAAgpmeX7G3rtKMyWEjb1

Ether: 0x4752d8a8615Cdf48E220f9dbb48654C7791716ee

Bitcoin Cash: qzh427szlnfyk2k6v547gkpjvafnmzgk35hzagzs82

New Clinical Study May Be the World’s First Cure for Alzheimer’s Disease – Press Release from Libella Gene Therapeutics

New Clinical Study May Be the World’s First Cure for Alzheimer’s Disease – Press Release from Libella Gene Therapeutics

logo_bg

Libella Gene Therapeutics


ORLANDO, Fla.Jan. 10, 2018 /PRNewswire/ — Libella Gene Therapeutics LLC will conduct an OUS (outside the United States) clinical trial in Cartagena, Colombia, using gene therapy to reverse age-related diseases, starting with Alzheimer’s. Unlike traditional drugs, which tend to be taken for months or years at a time, gene therapy interventions are intended to be one-off treatments that tackle a disease at its source, repairing faulty DNA and allowing the body to fix itself.

Every day 228 Americans die from Alzheimer’s disease, and there is currently no known treatment or cure. Gene therapy offers the ability to permanently correct a disease at its most basic level, the genome, and could offer cures for many conditions that are currently considered incurable. According to Dr. Bill Andrews, the scientist leading the study, “Human telomerase reverse transcriptase (hTERT) is an enzyme whose expression plays a role in cellular aging and is normally repressed in cells, resulting in progressive shortening of telomeres. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer.”

By inducing telomerase, Dr. Andrews and Libella Gene Therapeutics hope to lengthen telomeres in the body’s cells. The clinical trial will treat a limited number of patients using the gene therapy treatment, which has been demonstrated as safe, with minimal adverse reactions in over 186 clinical trials.

Dr. Andrews has been featured in Popular Science, on the “Today” show and in numerous documentaries on the topic of life extension. As one of the principal discoverers of both the RNA and protein components of human telomerase, Dr. Andrews was awarded second place as “National Inventor of the Year” in 1997. He earned a Ph.D. in molecular and population genetics at the University of Georgia in 1981. He has served in multiple senior science and technology roles at leading bioscience corporations. Dr. Andrews is a named inventor on over 50 U.S.-issued patents on telomerase and is the author of numerous scientific research studies published in peer-reviewed scientific journals.

On why the company decided to conduct its clinical research project outside the United States, Libella Gene Therapeutics president Dr. Jeff Mathis said, “Traditional clinical trials in the U.S. can take years and millions — or even billions — of dollars. The research and techniques that have been proven to work are ready now. We believe we have the scientist, the technology, the physicians, and the lab partners that are necessary to get this trial done faster in Colombia.”

The clinical trial is prepping to begin in the first quarter of 2018 and will be conducted at MediHelp Services Clinic in beautiful and tourist-friendly Cartagena, Colombia. The state-of-the-art facility has hosted international public figures including athletes, celebrities and politicians. Dr. Javier Hernandez, MediHelp’s medical director, will oversee the trial.

Colombia’s clinical research regulation is friendly to gene therapy trials, with one of the fastest approval times in Latin America for this kind of research. The trial’s clinical study design; regulatory, operation and logistical support; project management; statistical analysis; and study monitoring services will be provided by LATAM Market Access Inc., a Florida-based clinical research company.

About Libella Gene Therapeutics LLC 
With a mission to reverse aging and cure all age-related diseasesstarting with Alzheimer’sLibella Gene Therapeutics has exclusively licensed the AAV Reverse (hTERT) transcriptase enzyme technology from Sierra Sciences and Dr. Bill Andrews. More information at www.libellagenetherapeutics.com.

About LATAM Market Access Inc.
Dedicated to helping innovative life science companies gather cost-effective clinical data at leading research institutions, the company provides clinical study design; regulatory, operational and logistics support; project management; statistical analysis; and study monitoring services. More information at www.latammarketaccess.com.

 

Stem-Cell Clinical Trials Show Remarkable Results Against Age-Related Frailty – Article by Steve Hill

Stem-Cell Clinical Trials Show Remarkable Results Against Age-Related Frailty – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill discusses two very promising human clinical trials using stem cell therapy for age-related frailty. This article was originally published by the Life Extension Advocacy Foundation (LEAF) .

~ Kenneth Alum, Director of Publication, U.S. Transhumanist Party, October 29, 2017

The first results of two human clinical trials using stem cell therapy for age-related frailty have been published, and the results are very impressive indeed. The studies show that the approach used is effective in tackling multiple key age-related factors.

Aging research has made significant progress in the last few years, with senescent-cell-clearing therapies entering human trials this year, DNA repair in human trials, and a number of other exciting therapies nearing human testing. We are reaching the point where therapies that target aging processes are no longer a matter of speculation; they are now an undeniable matter of fact.

What are mesenchymal stem cells?

Mesenchymal stem cells (MSCs) are one of the most commonly used types of stem cells in therapy. MSCs are adult stem cells that can become other types of cells, depending on stimulus; this ability to become a variety of other cell types is known as multipotency. [1]

The cells into which MSCs can transform (differentiate) include osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells), and adipocytes (fat cells). MSCs are of great interest to aging researchers and are arguably one of the most well studied and understood types of stem cells. [2]

MSCs are currently in various trials to treat conditions such as cancer, heart disease, and arthritis. [3] The potential of MSCs for treating neurodegenerative diseases, such as Alzheimer’s, are also being explored in preclinical testing. [4-5]

A therapy for age-related frailty

The focus of the MSC therapy in the case of these two clinical trials is to reduce the effects of age-related frailty on senior citizens. This also marks an important step for rejuvenation biotechnology, as this is the first stem-cell treatment that is close to final FDA approval for specifically targeting age-related frailty. Should this be approved, then it opens the door for other similar approaches and the potential treatment of many age-related diseases.

The therapy itself uses MSCs taken from adult donor bone marrow and is infused into patients with an average age of 76 years old. The good news is that patients in both the phase 1 and phase 2 clinical trials have shown no adverse effects to treatment.

This is excellent news and now paves the way to move to phase 3 clinical trials, which are larger-scale tests to further determine the efficacy and compare it to the best currently available treatments, for which there are basically none beyond simple coping approaches, such as walking sticks and frames to compensate for frailty.

It is also important to note that at this at this point, the drug or therapy is accepted as having some effect. You can read more about the clinical trial process and what each phase means here.

In the first trial, 15 patients with age-related frailty were given a single transplant of MSCs from donors aged between 20 and 45. [6] Six months later, all patients in the trial showed an improved level of fitness, lower levels of inflammatory tumor necrosis factor (TNF), and improved quality of life in general. TNF is one of the regulators of inflammation and contributes to the chronic age-related inflammation known as “inflammaging”, which drives a number of age-related diseases. [7]

The second trial was a randomized, double-blind study including a placebo group. An improved physical performance level was observed in patients, and, again, the level of systemic TNF, and thus inflammation, was reduced. [8] Once again, there were no adverse effects observed in the patients, and the researchers wrote:

Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome.

David G. Le Couter and colleagues have written about the clinical trials in a guest editorial in The Journals of Gerontology:

There are always caveats associated with interpreting efficacy in small numbers of subjects, yet it is remarkable that a single treatment seems to have generated improvement in key features of frailty that are sustained for many months.

The next step for the researchers here is to begin a phase 2b clinical trial with 120 patients in ten different locations. Following the conclusion of this, a large randomized phase 3 trial will be launched, and this will be the final barrier to public approval for the therapy.

Conclusion

With an ever-increasing number of aged people in our population, stem cells hold great potential for treating a number of age-related diseases and combating the disability and frailty that accompany the aging process. Developing therapies like these could potentially help older people to enjoy an improved level of physical performance and a better quality of life. Being able to remain mobile and independent as we grow older would be of huge benefit to not only the individual but also to families and society as a whole.

There are currently no FDA-approved treatments for age-related frailty, so this represents a huge unmet need that will only worsen with an increasingly aging population if those needs are not met by new medicines.

Seeing such tangible results in humans is a clear indication of the potential of rejuvenation biotechnology, and how we regard and treat aging will be changing in the near future.

Literature

[1] Nardi, N. B., & da Silva Meirelles, L. (2008). Mesenchymal stem cells: isolation, in vitro expansion and characterization. In Stem cells (pp. 249-282). Springer Berlin Heidelberg.

[2] Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of ageing and development, 129(3), 163-173.

[3] Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of hematology & oncology, 5(1), 19.

[4] Danielyan, L., Beer-Hammer, S., Stolzing, A., Schäfer, R., Siegel, G., Fabian, C., … & Novakovic, A. (2014). Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell transplantation, 23(1), S123-S139.

[5] Naaldijk, Y., Jaeger, C., Fabian, C., Leovsky, C., Blüher, A., Rudolph, L., … & Stolzing, A. (2017). Effect of systemic transplantation of bone marrow‐derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathology and applied neurobiology, 43(4), 299-314.

[6] Golpanian, S., DiFede, D. L., Khan, A., Schulman, I. H., Landin, A. M., Tompkins, B. A., … & Levis-Dusseau, S. (2017). Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, glx056.

[7] Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘Garb-aging’. Trends in Endocrinology & Metabolism, 28(3), 199-212.

[8] Tompkins, B. A., DiFede, D. L., Khan, A., Landin, A. M., Schulman, I. H., Pujol, M. V., … & Mushtaq, M. (2017). Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72(11), 1513-1522.

 

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews, and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity Reporter, Psychology Today, and Singularity Weblog. He is a co-author of the book Aging Prevention for All – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.