Browsed by
Tag: Bone Healing

Boosting Bone Healing Using a Key Protein – Article by Steve Hill

Boosting Bone Healing Using a Key Protein – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill highlights research on selective bone regeneration using a protein called Jagged-1. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, March 7, 2018

Today, we would like to highlight a recent study in which researchers show a way to selectively accelerate bone regeneration. They have achieved this by delivering Jagged-1 to injuries instead of the bone morphogenetic proteins (BMPs) that have been traditionally used.

What is Jagged-1?

Jagged-1 is an osteoinductive protein that activates the Notch signaling pathway, which regulates bone healing at the site of injury. Osteoinduction is the process by which osteogenesis is induced.

Osteoinduction involves recruiting immature cells and stimulating them to change into preosteoblasts. In a bone healing situation, such as during a fracture, the majority of bone healing depends on osteoinduction.

The new technique avoids the issues of inappropriate or excessive bone growth because, unlike BMPs, it targets osteoinductive mechanisms that are more directly associated with the regenerative process.

Testing their hypothesis

The researchers led by Kurt Hankenson, D.V.M., Ph.D., a professor of orthopedic surgery at Michigan Medicine, hypothesized for some years that by binding Jagged-1 to a biomaterial structure and delivering it to the site of injury, it could improve healing of the bone.

The published study results confirm this to be the case [1]. Mice and rats that were given Jagged-1, applied using a wet collagen sponge, saw improvements to both femoral and skull injuries. In contrast, the rodents treated with BMPs benefited but also experienced problematic bone hypertrophy, which is also observed in humans using BMPs.

The findings of this study suggest that the use of Jagged-1 for location-specific bone injury could potentially be developed into a therapy to help people recover from fractures and broken bones.

Conclusion

The use of signal molecules rather than drugs to encourage tissue regeneration is likely to increase in popularity in the coming years as the process becomes increasingly refined. This study is yet another example of how researchers are exploring the use of signalling molecules produced naturally in the body as an alternative to drug approaches, which can often have unwanted side effects. It should prove interesting to see how this approach develops in the next few years.

Literature

[1] Youngstrom, D. W., Senos, R., Zondervan, R. L., Brodeur, J. D., Lints, A. R., Young, D. R., … & Loomes, K. M. (2017). Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects. NPJ Regenerative medicine, 2(1), 32.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies, Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.