Browsed by
Tag: anti-aging research

The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

Ariel VA Feinerman
Gary Hudson


Gary Hudson

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage cause pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previous undamaged — young — state of an organism, we can really rejuvenate it! Sounds very promising, and so it is. And for some types of damage (for example, for senescent cells) it is already proved to work!

Today in our virtual studio somewhere between cold rainy Saint-Petersburg and warm rainy Seattle, we meet Gary Hudson!

He has been involved in private space flight development for over 40 years. Hudson is best known as the founder of Rotary Rocket Company, which in spending ~$30 Million attempted to build a unique single stage to orbit launch vehicle known as the Roton. He helped found Transformational Space T/Space in 2004 and AirLaunch LLC which was awarded the DARPA/USAF FALCON project in 2003.

Previous projects included designs of the Phoenix SSTO, the Percheron, and other rockets, founder of Pacific American Launch Systems, and various consulting projects. Currently, he is the President and CEO of the Space Studies Institute.

Now Hudson brings his excellent engineering skills into rejuvenation biotechnology! He is a founding partner of Oisin Biotechnologies, who are developing a liposomally delivered DNA therapy for the removal of senescent cells from the body. Hudson provided an initial seed donation to help fund the creation of the Methuselah Foundation and SENS Research Foundation.

Interview

Feinerman: Hello, Mr Gary Hudson!

Hudson: Thanks for inviting us to this interview!

Feinerman: You have recently visited an amazing Undoing Aging 2018 conference, which took place in Berlin, 15–17 March, where your colleague, Matthew Scholz, was a speaker. What is your impression?

Hudson: It was a great conference with several important presentations. It put me in mind of the early SENS conferences in Cambridge, UK, which I helped to sponsor. I understand it will now become an annual event. Our CSO Dr. John Lewis also gave an important summary of our work to date.

Feinerman: Will Oisin’s presentations from conference be available for general public?

Hudson: I believe that the SENS Foundation will be posting them but I don’t have details about the timing.

FeinermanYour last interview was in July 2017, more than half a year ago. What has been accomplished?

Hudson: We have conducted many pre-clinical mouse experiments on both cancer and senescent cell removal. All have been successful and produce very remarkable results. We’ve also conducted a pilot toxicity and safety trial on non-human primates. The results of that trial were also successful and encourage us to proceed to human safety trials as soon as regulatory authorities approve them. We have also spun-out a cancer-focused company, Oisin Oncology, and raised a seed round for that venture.

Feinerman: Great to hear! However, when can we see some papers? People usually trust papers more than mere interviews or press releases. Of course, papers need many efforts not related to research but they will allow you attract more attention from general public, researchers, and investors.

Hudson: Papers are being prepared now for submission to major journals, but that process takes time, especially the peer review. For the moment, most of our data is only available to investors and partners in pharma and the biotech industry.

Feinerman: You planned human clinical trials, have you carried them out?

Hudson: It takes quite some time to organize a human trial and to get it approved. Before one can be conducted, we have to set up so-called “GMP (Good Manufacturing Practice) manufacture of our therapeutic, and then we have to conduct “GLP (Good Laboratory Practice) Tox” studies in two different species. Once that is all completed later this year, then we can begin a human safety trial, or a “Phase 1” trial. All this takes time, but we hope that first safety trials in oncology indications might begin this year, or in early 2019.

Feinerman: Does that mean we have a race between Unity Biotechnology and Oisin and you have all chances to win the race?

Hudson: I don’t see it as a race or a competition. I believe that future anti-aging treatment will require multiple complimentary approaches.

Feinerman: When we can expect your therapy available in the clinic?

Hudson: It’s very difficult to predict. I believe that our cancer treatment will make it to the clinic first, and that could happen in less than five years. Since the FDA doesn’t regard ageing as an indication, it may take longer for our SENSOlytic™ treatment to reach the public, since the regulatory environment will need to change.

Feinerman: As Michael Rae has said, we need not to wait when ageing will be recognised as a disease. You can mark your senolytics as a therapy for specific ageing pathology like fibrosis or chronic inflammation in the same way as Unity does.

Hudson: This is certainly true and is part of our strategy, but many of those endpoints are more difficult to ascertain than oncology endpoints. Additionally, going after oncology approvals can be faster and easier to get to clinic. But we will push forward on several fronts as funding permits.

Feinerman: In your previous interview you have said that you make some tweaks to both the promoter side and the effector side of the constructs that will provide even more interesting and useful extensions to the basic capability, but you can’t discuss those for IP reasons. Can you now say about them?

Hudson: I still can’t say too much about them, but we have conducted animal trials on some of these “tweaks” and they work quite well. The downside to the matter is that every “tweak” requires new trials, and our goal is to get something to the clinic as soon as possible, so many of the improvements will have to wait. Progress is limited based on available funds and personnel resources, of course, but we will move as quickly as we can.

Feinerman: Do you use any CAD software to design your constructs? Are you going to make them public so independent engineers will be able to help you identify new useful pairs of promoters and effectors? Your technology is so powerful that Open Source approach would be very helpful!

Hudson: No, the design of the current constructs are very straightforward and simple. As our patents are issued, their design will become public. If people wish to design their own constructs for particular applications they may contact us for collaboration, though we do have several collaborations active at the moment so we may already be working on similar ideas.

Feinerman: What do you think on targeting your machinery on cells with abnormal telomerase activity to kill cancer? Can you use several conditions — like in programming — several promoters to be more specific?

Hudson: If we targeted telomerase we’d also kill stem cells, just like the side effects of much of conventional chemotherapy. That’s probably not a good idea. But multiple promoters, or synthetic promoters, might be used to achieve the aims of killing only cancer cells. Our initial therapeutic will likely just employ p53 promoter targeting, since we have good data that works.

Feinerman: Yeah, the same issue as when we remove or break telomerase gene: there would be nice to do this only in compromised tissue, but as researchers say it is very difficult to make the removal selective. However, it is not a problem with ALT genes, which cause 15–20% of cancers. Are you going to collaborate with the OncoSENS lab? Also killing cells actively expressing telomerase will be very useful in WILT implementation.

Hudson: We’ve had conversations with the SENS Foundation about OncoSENS and cooperated in a preliminary fashion, but I don’t believe it is currently a research priority for them. We already have enough projects to keep us busy for some time, too!

Feinerman: Now you use only suicide gene as an effector, do you plan to use other genes? For example to enhance the cells, give them ability to produce new enzymes, or temporarily shut down telomerase to help anti-cancer therapy to be more effective.

Hudson: We believe we can express any gene under the control of any promoter we wish to use, so the possibilities are almost endless.

Feinerman: Now we know that epigenetic changes (shift) play a huge role in ageing. Even though there is no consensus among researchers whether they are a cause or a consequence of ageing, experiments show that temporal expression of OSKM transcription factors may have some health benefits by restoring “young” epigenetic profiles. You can remember the Belmonte work, for example. However, the problem in their work is that they used transgenic mice and express OSKM in every their cell. If you temporarily express OSKM in an “old” cell, that is OK, you can “rejuvenate” such a cell. While if you express OSKM in a stem cell which is already biologically “young”, you can force the cell into iPSC, which is a way to cancer. Using your machinery we can target only cells which have “old” expression profiles, and involving normal mice! Such a work will be much “cleaner” and safer than Belmonte’s work.

Hudson: With respect to your comments about reprogramming, Oisin is currently working with a university group on exactly this approach, but I can’t say more at this time. We also believe that first you have to clear existing senescent cells, then you can reprogram successfully.

Feinerman: How many resources, finances, and personnel do you need to move as quickly as possible? Do you have open positions? Maybe, some of our readers have enough finances or experience.

Hudson: We could effectively spend tens of millions or dollar or more, very easily, but it isn’t realistic to assume we could raise that amount — and if we did, we’d lose control of Oisin’s ageing focus, since investors would most likely want us to aim at quick returns. We are always interested in talking with “mission minded” investors, however. As for hiring, we have to do that slowly and judiciously, since labour is one of the biggest costs to a start-up company, and over-hiring can sink a project quickly. We already have more potential hires than we can bring on-board.

Feinerman: Now cryptocurrencies and blockchain technologies allow completely new and efficient ways for investments. We can see this as various no-name companies easily rise tens of millions dollars via ICOs for clearly doubtful projects. Would you like to make an ICO? Oisin shows real progress and can easily rise big sums! People say that they will be glad to buy your tokens if you issue them. You have said that you prefer to work with “mission minded” investors. There are thousands people out there who can invest from $1,000 to $100,000 in cryptocurrencies and who believe that radical extension of healthy life is possible!

If you are worried about legal issues, you can use various cryptocurrency investment funds who act like proxies between holders of cryptocurrencies and companies.

Hudson: We have investigated several of these financing options, but we are not expert in this area, so we have been reluctant to move too quickly. But we continue to have conversations with relevant parties. There is a lot of regulatory uncertainty surrounding ICOs, however, so we must move cautiously.

Feinerman: Now we know enough about ageing to defeat our main enemy. Do you agree that first comprehensive rejuvenation panel is not a scientific problem and even not an engineering problem, but a problem of engineering management?

Hudson: I wouldn’t say that there is no science left to do, but as an engineer myself I naturally agree that proper engineering management and program management skills must be brought to bear on the problem of ageing.

Feinerman: One person has said, we get what we ask for. Can we now aim high and publicly claim that our main goal is not additional five years of life but LEV — Longevity Escape Velocity and finally unlimited healthy life?

Hudson: This is a difficult “public relations” problem. Most investors, the scientific community, and the public are not yet ready to embrace the notion of longevity escape velocity. Thus at Oisin we do pitch health span as a primary goal. But personally I don’t believe that you can obtain health span improvements without making significant progress towards LEV. So in the end, I think we get LEV by targeting health span, and we reduce the controversy by doing so.

Feinerman: Some people ask me how to buy your stocks or invest in Oisin. What can you say?

Hudson: We do have a number of private investors (angel investors) who are “mission minded” or “mission focused” and we welcome discussions with qualified investors and firms who share our vision for dealing with ageing and cancer. Accredited investor candidates may contact us at info@oisinbio.com

Feinerman: David Gobel claims that “By advancing tissue engineering and regenerative medicine, we want to create a world where 90-year olds can be as healthy as 50-year olds by 2030.” And I secretly hope that 40 will become new 30 or even 20 by 2030! Can we achieve that — in principle?

Hudson: I certainly hope so! In 2030 I’ll be 80, so I’m looking forward to feeling like I’m 40…

Feinerman: Thank you very much for your amazing answers! That was a real pleasure to talk with such a great man like you. I hope we all will succeed in our goal and will have hundreds, thousands, and — who knows? — maybe even millions years of healthy life!

Hudson: It is kind of you to say so, but I only consider myself fortunate to be working with the really great men and women in the anti-aging community who are doing the real work. I’m only trying to facilitate their efforts and get treatments to the clinic as fast as possible. I don’t know what will be possible in the long term, but anything will be better than letting nature run its course, producing sickness and declining functional health.

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality.

Message from Ariel VA Feinerman: If you like my work, any help will be appreciated!

PayPal: arielfeinerman@gmail.com

Bitcoin: 1Gz5ebAyPmM9vNAAgpmeX7G3rtKMyWEjb1

Ether: 0x4752d8a8615Cdf48E220f9dbb48654C7791716ee

Bitcoin Cash: qzh427szlnfyk2k6v547gkpjvafnmzgk35hzagzs82

New FDA Regenerative Medicine Framework is Win-Win for Gene Therapies – Article by Keith Comito and Elena Milova

New FDA Regenerative Medicine Framework is Win-Win for Gene Therapies – Article by Keith Comito and Elena Milova

Elena Milova
Keith Comito


Editor’s Note: In this article, Keith Comito and Elena Milova positively discuss new a FDA regulatory framework on RMAT (regenerative medicine advanced therapies) and on how it benefits the healthy-life-extension community. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, March 3, 2018

Back in November 2017, the FDA announced a comprehensive policy framework for the development and oversight of regenerative medicine products, including novel cellular therapies. Both draft guidance documents had 90-day comment periods, and we at LEAF joined forces with the Niskanen Center to submit comments to the FDA to ensure that the voice of the community for healthy life extension was heard. These new regulations could have considerable implications for the therapies and technologies being developed as part of the biomedical gerontology field.

The first draft guidance addresses how the FDA intends to optimize its regulatory requirements for devices used in the recovery, isolation, and delivery of RMATs (regenerative medicine advanced therapies), including combination products.

The second document explains what expedited programs may be available to sponsors of regenerative medicine therapies and describes what therapies may be eligible for RMAT designation.

According to new FDA regulations, a drug is eligible for designation as an RMAT if:

  • The drug is a regenerative medicine therapy, which is defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products, except for those regulated solely under Section 361 of the Public Health Service Act and part 1271 of Title 21, Code of Federal Regulations;
  • The drug is intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • Preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs for such disease or condition

We hope that this joint project will support the improvement of US regulations that concern these innovative treatments and will make the overall regulatory landscape more friendly. Below, we cite the most important notes from our resulting paper.

Last week, the Niskanen Center joined with the Life Extension Advocacy Foundation in filing comments to the Food and Drug Administration (FDA), offering our support for the agency’s new regenerative medicine advanced therapy (RMAT) designation draft guidance for industry.

Although there are opportunities for marginal improvements to the guidance, and FDA approval processes more generally, we are happy to see that the agency chose to include gene therapies in its interpretation of what qualifies as a regenerative medicine therapy.

Under section 3033 of the 21st Century Cures Act, the FDA was tasked with developing an accelerated approval process for regenerative advanced therapies. Such therapies would qualify for expedited review and approval so long as the drug (a) met the definition of a regenerative medicine therapy, (b) was “intended to treat, modify, reverse, or cure a serious condition,” and (c) “has the potential to address unmet medical needs” for a serious disease or condition. Unfortunately, the bill’s definition of a regenerative medicine advanced therapy was unclear on whether gene therapies, in particular, would qualify. Luckily, the FDA clarified this point. As the RMAT guidance document notes:

gene therapies, including genetically modified cells, that lead to a durable modification of cells or tissues may meet the definition of a regenerative medicine therapy. Additionally, a combination product (biologic-device, biologic-drug, or biologic-device-drug) can be eligible for RMAT designation when the biological product component provides the greatest contribution to the overall intended therapeutic effects of the combination product.

This is an excellent development and one that portends immense benefits for future gene therapy applications submitted for FDA approval. According to the guidance, the new RMAT designation, unlike other fast-track approval and review processes, “does not require evidence to indicate that the drug may offer a substantial improvement over available therapies.” Liberalizing the threshold standards of evidence for RMAT designation ensures that future gene therapies will encounter fewer unnecessary roadblocks in delivering more effective and innovative treatments for individuals suffering from debilitating diseases.

As we note in our concluding remarks:

Overall, we consider the RMAT guidance to be a stellar improvement over other expedited programs, especially in its qualifying criteria. However, greater clarity is needed in order to capture the benefits of more advanced cell therapies that can help contribute to the healthy aging and well-being of American citizens. As FDA Commissioner Scott Gottlieb recently noted: “The benefits of [gene therapy] science—and the products that become available—are likely to accelerate. How we define the modern framework for safely advancing these opportunities will determine whether we’re able to fully realize the benefits that these new technologies can offer.”

We agree wholeheartedly. Developing a regulatory framework that accommodates safety and innovation will be a key determinant of how quickly the benefits of regenerative medicine, gene therapy, and anti-aging research revolutionize the lives of Americans. This guidance is an important and promising step in the right direction. With the right modifications, it can help usher in a new age of healthcare improvement for individuals from all walks of life.

Read the full comments submitted to the FDA here.

Source: Niskanen Center

About Elena Milova

As a devoted advocate of rejuvenation technologies since 2013, Elena is providing the community with a systemic vision how aging is affecting our society. Her research interests include global and local policies on aging, demographic changes, public perception of the application of rejuvenation technologies to prevent age-related diseases and extend life, and related public concerns. Elena is a co-author of the book “Aging prevention for all” (in Russian, 2015) and the organizer of multiple educational events helping the general public adopt the idea of eventually bringing aging under medical control.

About Keith Comito

Keith Comito is President of LEAF / Lifespan.io and a long-time advocate of longevity research. He is also a computer programmer, mathematician, musician, lover of life and perhaps a man with too many hobbies. He earned a B.S. in Mathematics, B.S. in Computer science, and M.S. in Applied Mathematics at Hofstra University, where his work included analysis of the LMNA protein.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.