Browsed by
Tag: aging

The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

The Rise of Oisin Biotechnologies – Interview with Gary Hudson, CEO of Oisin Biotechnologies, by Ariel VA Feinerman

Ariel VA Feinerman
Gary Hudson


Gary Hudson

Preface

What is ageing? We can define ageing as a process of accumulation of the damage which is just a side-effect of normal metabolism. While researchers still poorly understand how metabolic processes cause damage accumulation, and how accumulated damage cause pathology, the damage itself — the structural difference between old tissue and young tissue — is categorized and understood pretty well. By repairing damage and restoring the previous undamaged — young — state of an organism, we can really rejuvenate it! Sounds very promising, and so it is. And for some types of damage (for example, for senescent cells) it is already proved to work!

Today in our virtual studio somewhere between cold rainy Saint-Petersburg and warm rainy Seattle, we meet Gary Hudson!

He has been involved in private space flight development for over 40 years. Hudson is best known as the founder of Rotary Rocket Company, which in spending ~$30 Million attempted to build a unique single stage to orbit launch vehicle known as the Roton. He helped found Transformational Space T/Space in 2004 and AirLaunch LLC which was awarded the DARPA/USAF FALCON project in 2003.

Previous projects included designs of the Phoenix SSTO, the Percheron, and other rockets, founder of Pacific American Launch Systems, and various consulting projects. Currently, he is the President and CEO of the Space Studies Institute.

Now Hudson brings his excellent engineering skills into rejuvenation biotechnology! He is a founding partner of Oisin Biotechnologies, who are developing a liposomally delivered DNA therapy for the removal of senescent cells from the body. Hudson provided an initial seed donation to help fund the creation of the Methuselah Foundation and SENS Research Foundation.

Interview

Feinerman: Hello, Mr Gary Hudson!

Hudson: Thanks for inviting us to this interview!

Feinerman: You have recently visited an amazing Undoing Aging 2018 conference, which took place in Berlin, 15–17 March, where your colleague, Matthew Scholz, was a speaker. What is your impression?

Hudson: It was a great conference with several important presentations. It put me in mind of the early SENS conferences in Cambridge, UK, which I helped to sponsor. I understand it will now become an annual event. Our CSO Dr. John Lewis also gave an important summary of our work to date.

Feinerman: Will Oisin’s presentations from conference be available for general public?

Hudson: I believe that the SENS Foundation will be posting them but I don’t have details about the timing.

FeinermanYour last interview was in July 2017, more than half a year ago. What has been accomplished?

Hudson: We have conducted many pre-clinical mouse experiments on both cancer and senescent cell removal. All have been successful and produce very remarkable results. We’ve also conducted a pilot toxicity and safety trial on non-human primates. The results of that trial were also successful and encourage us to proceed to human safety trials as soon as regulatory authorities approve them. We have also spun-out a cancer-focused company, Oisin Oncology, and raised a seed round for that venture.

Feinerman: Great to hear! However, when can we see some papers? People usually trust papers more than mere interviews or press releases. Of course, papers need many efforts not related to research but they will allow you attract more attention from general public, researchers, and investors.

Hudson: Papers are being prepared now for submission to major journals, but that process takes time, especially the peer review. For the moment, most of our data is only available to investors and partners in pharma and the biotech industry.

Feinerman: You planned human clinical trials, have you carried them out?

Hudson: It takes quite some time to organize a human trial and to get it approved. Before one can be conducted, we have to set up so-called “GMP (Good Manufacturing Practice) manufacture of our therapeutic, and then we have to conduct “GLP (Good Laboratory Practice) Tox” studies in two different species. Once that is all completed later this year, then we can begin a human safety trial, or a “Phase 1” trial. All this takes time, but we hope that first safety trials in oncology indications might begin this year, or in early 2019.

Feinerman: Does that mean we have a race between Unity Biotechnology and Oisin and you have all chances to win the race?

Hudson: I don’t see it as a race or a competition. I believe that future anti-aging treatment will require multiple complimentary approaches.

Feinerman: When we can expect your therapy available in the clinic?

Hudson: It’s very difficult to predict. I believe that our cancer treatment will make it to the clinic first, and that could happen in less than five years. Since the FDA doesn’t regard ageing as an indication, it may take longer for our SENSOlytic™ treatment to reach the public, since the regulatory environment will need to change.

Feinerman: As Michael Rae has said, we need not to wait when ageing will be recognised as a disease. You can mark your senolytics as a therapy for specific ageing pathology like fibrosis or chronic inflammation in the same way as Unity does.

Hudson: This is certainly true and is part of our strategy, but many of those endpoints are more difficult to ascertain than oncology endpoints. Additionally, going after oncology approvals can be faster and easier to get to clinic. But we will push forward on several fronts as funding permits.

Feinerman: In your previous interview you have said that you make some tweaks to both the promoter side and the effector side of the constructs that will provide even more interesting and useful extensions to the basic capability, but you can’t discuss those for IP reasons. Can you now say about them?

Hudson: I still can’t say too much about them, but we have conducted animal trials on some of these “tweaks” and they work quite well. The downside to the matter is that every “tweak” requires new trials, and our goal is to get something to the clinic as soon as possible, so many of the improvements will have to wait. Progress is limited based on available funds and personnel resources, of course, but we will move as quickly as we can.

Feinerman: Do you use any CAD software to design your constructs? Are you going to make them public so independent engineers will be able to help you identify new useful pairs of promoters and effectors? Your technology is so powerful that Open Source approach would be very helpful!

Hudson: No, the design of the current constructs are very straightforward and simple. As our patents are issued, their design will become public. If people wish to design their own constructs for particular applications they may contact us for collaboration, though we do have several collaborations active at the moment so we may already be working on similar ideas.

Feinerman: What do you think on targeting your machinery on cells with abnormal telomerase activity to kill cancer? Can you use several conditions — like in programming — several promoters to be more specific?

Hudson: If we targeted telomerase we’d also kill stem cells, just like the side effects of much of conventional chemotherapy. That’s probably not a good idea. But multiple promoters, or synthetic promoters, might be used to achieve the aims of killing only cancer cells. Our initial therapeutic will likely just employ p53 promoter targeting, since we have good data that works.

Feinerman: Yeah, the same issue as when we remove or break telomerase gene: there would be nice to do this only in compromised tissue, but as researchers say it is very difficult to make the removal selective. However, it is not a problem with ALT genes, which cause 15–20% of cancers. Are you going to collaborate with the OncoSENS lab? Also killing cells actively expressing telomerase will be very useful in WILT implementation.

Hudson: We’ve had conversations with the SENS Foundation about OncoSENS and cooperated in a preliminary fashion, but I don’t believe it is currently a research priority for them. We already have enough projects to keep us busy for some time, too!

Feinerman: Now you use only suicide gene as an effector, do you plan to use other genes? For example to enhance the cells, give them ability to produce new enzymes, or temporarily shut down telomerase to help anti-cancer therapy to be more effective.

Hudson: We believe we can express any gene under the control of any promoter we wish to use, so the possibilities are almost endless.

Feinerman: Now we know that epigenetic changes (shift) play a huge role in ageing. Even though there is no consensus among researchers whether they are a cause or a consequence of ageing, experiments show that temporal expression of OSKM transcription factors may have some health benefits by restoring “young” epigenetic profiles. You can remember the Belmonte work, for example. However, the problem in their work is that they used transgenic mice and express OSKM in every their cell. If you temporarily express OSKM in an “old” cell, that is OK, you can “rejuvenate” such a cell. While if you express OSKM in a stem cell which is already biologically “young”, you can force the cell into iPSC, which is a way to cancer. Using your machinery we can target only cells which have “old” expression profiles, and involving normal mice! Such a work will be much “cleaner” and safer than Belmonte’s work.

Hudson: With respect to your comments about reprogramming, Oisin is currently working with a university group on exactly this approach, but I can’t say more at this time. We also believe that first you have to clear existing senescent cells, then you can reprogram successfully.

Feinerman: How many resources, finances, and personnel do you need to move as quickly as possible? Do you have open positions? Maybe, some of our readers have enough finances or experience.

Hudson: We could effectively spend tens of millions or dollar or more, very easily, but it isn’t realistic to assume we could raise that amount — and if we did, we’d lose control of Oisin’s ageing focus, since investors would most likely want us to aim at quick returns. We are always interested in talking with “mission minded” investors, however. As for hiring, we have to do that slowly and judiciously, since labour is one of the biggest costs to a start-up company, and over-hiring can sink a project quickly. We already have more potential hires than we can bring on-board.

Feinerman: Now cryptocurrencies and blockchain technologies allow completely new and efficient ways for investments. We can see this as various no-name companies easily rise tens of millions dollars via ICOs for clearly doubtful projects. Would you like to make an ICO? Oisin shows real progress and can easily rise big sums! People say that they will be glad to buy your tokens if you issue them. You have said that you prefer to work with “mission minded” investors. There are thousands people out there who can invest from $1,000 to $100,000 in cryptocurrencies and who believe that radical extension of healthy life is possible!

If you are worried about legal issues, you can use various cryptocurrency investment funds who act like proxies between holders of cryptocurrencies and companies.

Hudson: We have investigated several of these financing options, but we are not expert in this area, so we have been reluctant to move too quickly. But we continue to have conversations with relevant parties. There is a lot of regulatory uncertainty surrounding ICOs, however, so we must move cautiously.

Feinerman: Now we know enough about ageing to defeat our main enemy. Do you agree that first comprehensive rejuvenation panel is not a scientific problem and even not an engineering problem, but a problem of engineering management?

Hudson: I wouldn’t say that there is no science left to do, but as an engineer myself I naturally agree that proper engineering management and program management skills must be brought to bear on the problem of ageing.

Feinerman: One person has said, we get what we ask for. Can we now aim high and publicly claim that our main goal is not additional five years of life but LEV — Longevity Escape Velocity and finally unlimited healthy life?

Hudson: This is a difficult “public relations” problem. Most investors, the scientific community, and the public are not yet ready to embrace the notion of longevity escape velocity. Thus at Oisin we do pitch health span as a primary goal. But personally I don’t believe that you can obtain health span improvements without making significant progress towards LEV. So in the end, I think we get LEV by targeting health span, and we reduce the controversy by doing so.

Feinerman: Some people ask me how to buy your stocks or invest in Oisin. What can you say?

Hudson: We do have a number of private investors (angel investors) who are “mission minded” or “mission focused” and we welcome discussions with qualified investors and firms who share our vision for dealing with ageing and cancer. Accredited investor candidates may contact us at info@oisinbio.com

Feinerman: David Gobel claims that “By advancing tissue engineering and regenerative medicine, we want to create a world where 90-year olds can be as healthy as 50-year olds by 2030.” And I secretly hope that 40 will become new 30 or even 20 by 2030! Can we achieve that — in principle?

Hudson: I certainly hope so! In 2030 I’ll be 80, so I’m looking forward to feeling like I’m 40…

Feinerman: Thank you very much for your amazing answers! That was a real pleasure to talk with such a great man like you. I hope we all will succeed in our goal and will have hundreds, thousands, and — who knows? — maybe even millions years of healthy life!

Hudson: It is kind of you to say so, but I only consider myself fortunate to be working with the really great men and women in the anti-aging community who are doing the real work. I’m only trying to facilitate their efforts and get treatments to the clinic as fast as possible. I don’t know what will be possible in the long term, but anything will be better than letting nature run its course, producing sickness and declining functional health.

Ariel VA Feinerman is a researcher, author, and photographer, who believes that people should not die from diseases and ageing, and whose main goal is to improve human health and achieve immortality.

Message from Ariel VA Feinerman: If you like my work, any help will be appreciated!

PayPal: arielfeinerman@gmail.com

Bitcoin: 1Gz5ebAyPmM9vNAAgpmeX7G3rtKMyWEjb1

Ether: 0x4752d8a8615Cdf48E220f9dbb48654C7791716ee

Bitcoin Cash: qzh427szlnfyk2k6v547gkpjvafnmzgk35hzagzs82

Beginners’ Explanation of Transhumanism – Bobby Ridge and Gennady Stolyarov II

Beginners’ Explanation of Transhumanism – Bobby Ridge and Gennady Stolyarov II

logo_bg

Bobby Ridge
Gennady Stolyarov II


Bobby Ridge, Secretary-Treasurer of the U.S. Transhumanist Party, and Gennady Stolyarov II, Chairman of the U.S. Transhumanist Party, provide a broad “big-picture” overview of transhumanism and major ongoing and future developments in emerging technologies that present the potential to revolutionize the human condition and resolve the age-old perils and limitations that have plagued humankind.

This is a beginners’ overview of transhumanism – which means that it is for everyone, including those who are new to transhumanism and the life-extension movement, as well as those who have been involved in it for many years – since, when it comes to dramatically expanding human longevity and potential, we are all beginners at the beginning of what could be our species’ next great era.

Become a member of the U.S. Transhumanist Party for free, no matter where you reside.

See Mr. Stolyarov’s presentation, “The U.S. Transhumanist Party: Pursuing a Peaceful Political Revolution for Longevity“.

In the background of some of the video segments is a painting now owned by Mr. Stolyarov, from “The Singularity is Here” series by artist Leah Montalto.

Dentists May Soon Regenerate Teeth Using GSK3 Antagonists – Article by Steve Hill

Dentists May Soon Regenerate Teeth Using GSK3 Antagonists – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill explains a teeth-regeneration technique that works by activating the stem cells that reside in the dental pulp of teeth. The technique has the potential to translate to other tissues to help encourage regeneration. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, March 6, 2018

What if I told you that we could regenerate our teeth? Well, that may soon be a possibility thanks to new research showing that teeth can be encouraged to regrow. Rather than drilling holes into teeth and plugging them with artificial fillers, dentists in the near future may be able to rebuild your teeth with a new technique.

Stimulating stem cells

Professor Paul Sharpe, a scientist based at King’s College in London, and his team have found a way to do just this in mice. They published a study last year that described this new approach [1].

The researchers wanted to increase the natural ability of teeth to repair themselves by activating the stem cells that reside in the dental pulp of teeth. They knew that previous research showed that the wnt signaling pathway is a key pathway for stem cell activity in many parts of the body, and they wanted to see if it works the same way in teeth.

The researchers believed by that using drugs to stimulate the wnt pathway, they could increase stem cell activity in teeth and boost their regenerative potential significantly. Normally, this level of regeneration is only seen in animals like starfish and salamanders, but the researchers wanted to see if we can benefit from the same regenerative capacity.

To see if this would work, the team drilled holes into the molar teeth of mice to simulate dental cavities. Next, they exposed collagen sponges (the same protein found in the dentin in teeth) to a variety of drugs known to stimulate the wnt pathway. Then, they placed these sponges into the cavities and sealed them in for between 4 to 6 weeks.

After this time, the researchers saw that the teeth exposed to these sponges had created a lot more dentin than the control mice and mice given typical dental fillers. The researchers observed that this was essentially a full repair and, in most cases, the teeth of the mice were as good as new.

The next step towards clinical trials

Since then, the researchers have tested the technique on rats, which have considerably larger teeth than mice, making them the logical next step. The research team report that the therapy worked equally well on the rats as it did in the mice in the original study; however, the data is yet to be published.

The researchers are now screening their drug candidates to identify the most effective of the wnt-stimulating drugs. They are also adapting the technique to work with modern dental practices by injecting a gel containing the drug into a dental cavity and hardening it using a UV light to seal it in. This is similar to how dentists currently seal and repair teeth, so this technique would be easy to incorporate into dental practice.

Literature

It will be several years before this enters human clinical trials, but the results so far are promising, and the process may be quicker than normal because a number of the candidate drugs are already approved for human use. The arrival of this technique will revolutionize dentistry and is a great step forward for regenerative medicine in general.

Such techniques have the potential to translate to other tissues to help encourage regeneration, so it is also relevant to aging research. We look forward to more developments from this team in the future.

References

[1] Neves, V. C., Babb, R., Chandrasekaran, D., & Sharpe, P. T. (2017). Promotion of natural tooth repair by small molecule GSK3 antagonists. Scientific reports, 7, 39654.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

New FDA Regenerative Medicine Framework is Win-Win for Gene Therapies – Article by Keith Comito and Elena Milova

New FDA Regenerative Medicine Framework is Win-Win for Gene Therapies – Article by Keith Comito and Elena Milova

Elena Milova
Keith Comito


Editor’s Note: In this article, Keith Comito and Elena Milova positively discuss new a FDA regulatory framework on RMAT (regenerative medicine advanced therapies) and on how it benefits the healthy-life-extension community. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, March 3, 2018

Back in November 2017, the FDA announced a comprehensive policy framework for the development and oversight of regenerative medicine products, including novel cellular therapies. Both draft guidance documents had 90-day comment periods, and we at LEAF joined forces with the Niskanen Center to submit comments to the FDA to ensure that the voice of the community for healthy life extension was heard. These new regulations could have considerable implications for the therapies and technologies being developed as part of the biomedical gerontology field.

The first draft guidance addresses how the FDA intends to optimize its regulatory requirements for devices used in the recovery, isolation, and delivery of RMATs (regenerative medicine advanced therapies), including combination products.

The second document explains what expedited programs may be available to sponsors of regenerative medicine therapies and describes what therapies may be eligible for RMAT designation.

According to new FDA regulations, a drug is eligible for designation as an RMAT if:

  • The drug is a regenerative medicine therapy, which is defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products, except for those regulated solely under Section 361 of the Public Health Service Act and part 1271 of Title 21, Code of Federal Regulations;
  • The drug is intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • Preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs for such disease or condition

We hope that this joint project will support the improvement of US regulations that concern these innovative treatments and will make the overall regulatory landscape more friendly. Below, we cite the most important notes from our resulting paper.

Last week, the Niskanen Center joined with the Life Extension Advocacy Foundation in filing comments to the Food and Drug Administration (FDA), offering our support for the agency’s new regenerative medicine advanced therapy (RMAT) designation draft guidance for industry.

Although there are opportunities for marginal improvements to the guidance, and FDA approval processes more generally, we are happy to see that the agency chose to include gene therapies in its interpretation of what qualifies as a regenerative medicine therapy.

Under section 3033 of the 21st Century Cures Act, the FDA was tasked with developing an accelerated approval process for regenerative advanced therapies. Such therapies would qualify for expedited review and approval so long as the drug (a) met the definition of a regenerative medicine therapy, (b) was “intended to treat, modify, reverse, or cure a serious condition,” and (c) “has the potential to address unmet medical needs” for a serious disease or condition. Unfortunately, the bill’s definition of a regenerative medicine advanced therapy was unclear on whether gene therapies, in particular, would qualify. Luckily, the FDA clarified this point. As the RMAT guidance document notes:

gene therapies, including genetically modified cells, that lead to a durable modification of cells or tissues may meet the definition of a regenerative medicine therapy. Additionally, a combination product (biologic-device, biologic-drug, or biologic-device-drug) can be eligible for RMAT designation when the biological product component provides the greatest contribution to the overall intended therapeutic effects of the combination product.

This is an excellent development and one that portends immense benefits for future gene therapy applications submitted for FDA approval. According to the guidance, the new RMAT designation, unlike other fast-track approval and review processes, “does not require evidence to indicate that the drug may offer a substantial improvement over available therapies.” Liberalizing the threshold standards of evidence for RMAT designation ensures that future gene therapies will encounter fewer unnecessary roadblocks in delivering more effective and innovative treatments for individuals suffering from debilitating diseases.

As we note in our concluding remarks:

Overall, we consider the RMAT guidance to be a stellar improvement over other expedited programs, especially in its qualifying criteria. However, greater clarity is needed in order to capture the benefits of more advanced cell therapies that can help contribute to the healthy aging and well-being of American citizens. As FDA Commissioner Scott Gottlieb recently noted: “The benefits of [gene therapy] science—and the products that become available—are likely to accelerate. How we define the modern framework for safely advancing these opportunities will determine whether we’re able to fully realize the benefits that these new technologies can offer.”

We agree wholeheartedly. Developing a regulatory framework that accommodates safety and innovation will be a key determinant of how quickly the benefits of regenerative medicine, gene therapy, and anti-aging research revolutionize the lives of Americans. This guidance is an important and promising step in the right direction. With the right modifications, it can help usher in a new age of healthcare improvement for individuals from all walks of life.

Read the full comments submitted to the FDA here.

Source: Niskanen Center

About Elena Milova

As a devoted advocate of rejuvenation technologies since 2013, Elena is providing the community with a systemic vision how aging is affecting our society. Her research interests include global and local policies on aging, demographic changes, public perception of the application of rejuvenation technologies to prevent age-related diseases and extend life, and related public concerns. Elena is a co-author of the book “Aging prevention for all” (in Russian, 2015) and the organizer of multiple educational events helping the general public adopt the idea of eventually bringing aging under medical control.

About Keith Comito

Keith Comito is President of LEAF / Lifespan.io and a long-time advocate of longevity research. He is also a computer programmer, mathematician, musician, lover of life and perhaps a man with too many hobbies. He earned a B.S. in Mathematics, B.S. in Computer science, and M.S. in Applied Mathematics at Hofstra University, where his work included analysis of the LMNA protein.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

International Team Publishes Roadmap to Enhance Radioresistance for Space Colonization – Press Release by Biogerontology Research Foundation

International Team Publishes Roadmap to Enhance Radioresistance for Space Colonization – Press Release by Biogerontology Research Foundation

Biogerontology Research Foundation


 

IMAGE: These are ways to reduce health risks from space radiation during deep space travels. Multiple approaches from medical selection of radioresistant individuals to gene therapy may be proposed.

Editor’s Note: Below is a press release by the Biogerontology Research Foundation which features a roadmap to enhance radioresistance for space exploration and colonization, published by an international team of scientists from NASA, Health Canada, Canadian Nuclear Laboratories and many other organizations. This press release was originally published here.

~ Dinorah Delfin, Director of Admissions and Public Relations, U.S. Transhumanist Party, February 22, 2018

An international team of researchers from NASA Ames Research Center, Environmental and Radiation Health Sciences Directorate at Health Canada, Oxford University, Canadian Nuclear Laboratories, Belgian Nuclear Research Centre, Insilico Medicine, the Biogerontology Research Center, Boston University, Johns Hopkins University, University of Lethbridge, Ghent University, Center for Healthy Aging, and many others have published a roadmap toward enhancing human radioresistance for space exploration and colonization in the peer-reviewed journal Oncotarget.

“Our recent manuscript provides a comprehensive review of radioresistance for space radiation. Currently there is minimal research being done for radioresistance against HZE irradiation. The importance of these types of studies will be to reduce the associated health risks for long-term space exploration and allow for the development of potential countermeasures against space radiation. In addition, the synergy between understanding aging with radioresistance will allow for further benefits for humans in long-term space missions and allow for reduced health risk. This review sets the stage for the potential research the scientific community can do to allow for safe long term space exploration” said Afshin Beheshti, an author of the paper and a Bioinformatician at NASA Ames Research Center.

The roadmap outlines future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, the coordination of regenerative and ablative technologies, and methods of slowing metabolic activity while preserving cognitive function. The paper concludes by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

“This paper explores the foreseeable means by which human radioresistance could be biomedically enhanced for the purposes of space exploration and colonization. It also aims to elucidate the links between aging, longevity and radioresistance, and the ways in which research into enhancing human radioresistance could synergistically enable human healthspan extension, ultimately highlighting how ongoing research into the very well-funded sphere of aerospace research could galvanize progress in biomedical gerontology, a massively under-funded area of research despite the grave economic burden posed by demographic aging” said Franco Cortese, an author of the paper and Deputy Director of the Biogerontology Research Foundation.

The publication of the paper in Oncotarget this week is timely, given the test launch of the Falcon Heavy, SpaceX’s largest rocket to date, just last week. Interest into space exploration and even colonisation has been mounting for a number of years. Less than one year ago Elon Musk, CEO of SpaceX, unveiled a roadmap toward colonizing Mars, outlining the ambitious goal of placing a million people on Mars within the next 40 to 100 years. If interest in space colonization continues apace, research into methods of enhancing radioresistance to protect against the various forms of space radiation that spacefarers would be subjected to needs to be accelerated accordingly.

“In linking ageing and radioresistance and tying together research into enhancing the radioresistance of astronauts with the extension of healthy longevity, we hope to have shown how aerospace research could be used to leapfrog the massive funding deficit surrounding the clinical translation of healthspan-extending interventions, in order to brave the storm of the oncoming Silver Tsunami and prevent the looming economic crisis posed by demographic aging” said Dmitry Kaminskiy, an author of the paper and Managing Trustee of the Biogerontology Research Foundation.

The roadmap highlights the need to converge and accelerate research in radiobiology, biogerontology and AI to enable spacefarers to address both the healthcare challenges that we are already aware of, as well as those that we are not.

“Sooner or later we’ll have to do it – leave Earth and wander into deep space. Such travel, taking one or more years outside the Earth’s magnetosphere, would take a high toll on astronauts’ health due to exposure to cosmic radiation. So it’s better to start thinking now about how we are going to cope with that challenge. Luckily, current knowledge from such fields as radiobiology, aging research and biotechnology in general, with the wealth of recent advances in gene editing and regenerative medicine, allow for the drafting of conceptual roadmaps to enhance human resistance to cosmic radiation. This is exactly what this work is all about. It was fun and a pleasure to partake in this theoretical project with such a diverse international team. We were just throwing ideas on the table, some being quite ambitious and futuristic, and then examining them carefully for feasibility and assessing their potential. The work laid out several interesting directions and concepts that can eventually pay off. Last but not least, I think it is also very important to attract widespread attention and interest to this topic” said Dmitry Klokov, an author of the paper and Section Head of the Radiobiology & Health section at Canadian Nuclear Laboratories.

Furthermore, given the massive amount of funding allocated to research into facilitating and optimizing space exploration and optimization, the researchers hope to have shown how research into enhancing radioresistance for space exploration could galvanize progress in human healthspan extension, an area of research that is still massively underfunded despite its potential to prevent the massive economic burden posed by the future healthcare costs associated with demographic aging.

“This roadmap sets the stage for enhancing human biology beyond our natural limits in ways that will confer not only longevity and disease resistance but will be essential for future space exploration” said João Pedro de Magalhães, an author of the paper and a Trustee of the Biogerontology Research Foundation.

###

The paper, entitled “Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization”, can be viewed on Oncotarget here.

Citation: Franco Cortese, Dmitry Klokov, Andreyan Osipov, Jakub Stefaniak, Alexey Moskalev, Jane Schastnaya, Charles Cantor, Alexander Aliper, Polina Mamoshina, Igor Ushakov, Alex Sapetsky, Quentin Vanhaelen, Irina Alchinova, Mikhail Karganov, Olga Kovalchuk, Ruth Wilkins, Andrey Shtemberg, Marjan Moreels, Sarah Baatout, Evgeny Izumchenko, João Pedro de Magalhães, Artem V. Artemov, Sylvain V. Costes, Afshin Beheshti, Xiao Wen Mao, Michael J. Pecaut, Dmitry Kaminskiy, Ivan V. Ozerov, Morten Scheibye-Knudsen and Alex Zhavoronkov. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization, Epub ahead of print. Published online 2018 February 09. doi: 10.18632/oncotarget.24461

About the Biogerontology Research Foundation:

The Biogerontology Research Foundation is a UK non-profit research foundation and public policy center seeking to fill a gap within the research community, whereby the current scientific understanding of the ageing process is not yet being sufficiently exploited to produce effective medical interventions. The BGRF funds and conducts research which, building on the body of knowledge about how ageing happens, aims to develop biotechnological interventions to remediate the molecular and cellular deficits which accumulate with age and which underlie the ill-health of old age. Addressing ageing damage at this most fundamental level will provide an important opportunity to produce the effective, lasting treatments for the diseases and disabilities of ageing, required to improve quality of life in the elderly. The BGRF seeks to use the entire scope of modern biotechnology to attack the changes that take place in the course of ageing, and to address not just the symptoms of age-related diseases but also the mechanisms of those diseases.

Google’s Calico Labs Announces Discovery of a “Non-Aging Mammal” – Article by Brady Hartman

Google’s Calico Labs Announces Discovery of a “Non-Aging Mammal” – Article by Brady Hartman

Brady Hartman


Editor’s Note: In this article, Mr. Brady Hartman explains a study that shows the naked mole-rats have an extremely low rate of aging.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, February 19, 2018

Completely bald and with wrinkly skin, the naked mole rat is one of the ugliest creatures around but lives an exceptionally long life for a small mammal. It rarely develops the chronic diseases of aging, such as cancer, and lives 10 times longer than regular rats.

The First Non-Aging Mammal

In the first significant announcement from Calico Labs since it was formed in 2013, researchers Rochelle Buffenstein, Megan Smith, and J. Graham Ruby have announced that the naked mole rat is a “non-aging mammal.”

The researchers followed the naked mole rats – housed at the Buck Institute – over a three-decade-long study period. They found that these creatures show hardly any signs of aging, such as problems with their metabolism, heart, or bones. Females do not go through menopause and continue to reproduce into their 30s, which is an amazing feat for an animal that lives at least 30 years of age in captivity. Even the cells in their bodies have a remarkable resistance to oxidative damage caused by free radicals. Small rodents the size of the naked mole rat live for no more than six years.

Senior Principal Investigator Rochelle (Shelley) Buffenstein, Ph.D. spent the early part of her career at the Medical School of the University of Witwatersrand, South Africa, where she studied the naked mole rat for ten years. Principal Investigator J. Graham Ruby, Ph.D. received his doctorate in biology from MIT and performs biometric, biostatistical, bioinformatic, and quantitative genetic analyses of diverse data to decipher the aging process in humans and model organisms. The researchers published their results on Jan 24th in the open access journal eLife [1].

How the Non-Aging Mammal Was Discovered

To judge the rate of aging, the Calico team used a mathematical model called the Gompertz-Makeham law of mortality. This statistically validated law states that the risk of death for every mammal increases exponentially with increasing age. The Calico researchers used this model to analyze an existing data set of more than 3000 naked mole rats over a 30-year timespan and found that the small mammals did not conform to the Gompertz-Makeham law. Unlike every other mammal, the mole rats do not face an increased hazard of death with each birthday; as the Calico authors said, “This absence of hazard increase with age, in defiance of Gompertz’s law, uniquely identifies the naked mole-rat as a non-aging mammal.”

Estimated probability of a US person dying at each age (2003.) Credit: Uscitizenjason CC BY SA 3.0

This is astonishing given that all other mammals, including humans, face an increased rate of death with each passing birthday. Consider this hazard chart for US citizens in 2003, in which the mortality rates increase exponentially with age after the age of 30.  In contrast, the equivalent chart for the naked mole rat is almost flat.

Caleb E. Finch and Hiram Beltrán-Sánchez, a pair of scientists from the University of Southern California (USC) in Los Angeles, analyzed and commented on the study. Caleb E. Finch, Ph.D. is a molecular biologist in the Leonard Davis School of Gerontology and Dornsife College. Hiram Beltrán-Sánchez is from the Department of Community Health Sciences and the California Center for Population Research.

Commenting on the remarkable results of the study in a companion piece [2], Finch and Beltrán-Sánchez said that the naked mole rat defied the Gompertz-Makeham law, remarking, “their risk of death does not increase as they get older” and “this is unprecedented for mammals.”

Finch and Beltrán-Sánchez said that previous studies of the non-aging mammal suggest that aging creeps in, nevertheless. Naked mole rats can accumulate oxidative damage in their cells and experience muscle wasting. There is also some evidence for small amounts of cancer. But, after reviewing the evidence, the USC authors said, “This would suggest that unlike any other mammal, the naked mole rats have an extremely low rate of aging.”

Finch and Beltrán-Sánchez said that the minimal age-related problems of the mole rat combined with its long lifespan allow it to achieve ‘negligible senescence,’ a phenomenon in which an animal reaches an advanced age without increased mortality or disability.

Other scientists believe that the longevity of naked mole rats is due to the limited oxygen of their subterranean habitat. Because of this environment, their metabolic rates are abnormally slow, and an abundance of repair mechanisms keeps their cells astonishingly youthful.

About Longevityfacts

LEAF has teamed up with its friends at LongevityFacts and will be publishing some of their articles as part of an agreed syndication deal. This article originally appeared here at LongevityFacts.

References

[1] J Graham Ruby, Megan Smith, Rochelle Buffenstein, Calico Life Sciences LLC. “Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age.” eLife 2018;7:e31157 DOI: 10.7554/eLife.31157, Jan 24, 2018.

[2] Hiram Beltrán-Sánchez, Caleb Finch. “Life Expectancy: Age is just a number.” eLife 2018;7:e34427 DOI: 10.7554/eLife.34427 Jan 24, 2018.

 

About Brady Hartman

Brady is the editor of the longevity focused blog LongevityFacts.com and is an active advocate for rejuvenation biotechnology and geroscience.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Is Aging Natural, a Disease That We Can Treat, or Both? – Article by Steve Hill

Is Aging Natural, a Disease That We Can Treat, or Both? – Article by Steve Hill

Steve Hill


Editor’s Note: In this article, Mr. Steve Hill explains that aging can be described as both natural and pathological without contradiction. This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, February 16, 2018

Aging is something that we all share, rich or poor; it is something that happens to us all, and we are taught from a young age that it is inevitable. However, some scientists believe that aging is amenable to medical intervention and that such interventions could be the solution to preventing or reversing age-related diseases.

Academics are currently debating whether aging is natural or a pathological disease that we can treat.

In fact, there is now pressure from many academics to classify aging itself as a disease; indeed, doing so could potentially improve funding for aging research and help to speed up progress in finding solutions to age-related diseases. [1] The debate continues, but does it really matter if aging is classified as a disease, or is it largely a matter of semantics?

Fighting a losing battle

Current medical practice sees us trying to treat age-related diseases in the same way we do other diseases; this is the “infectious disease model”, and when it comes to treating age-related diseases, it is a losing battle.

The current approach works like this: as soon as a disease appears, the doctor attacks the disease using everything in the medical armory, and the patient can then continue with life until the next disease happens; this process is repeated until failure. This is an excellent way to deal with infectious diseases, and it has helped to increase life expectancy greatly in the last century; however, there are signs are that this approach is starting to run out of steam. [2-4]

Unfortunately, this “whack-a-mole” approach is a poor choice when it comes to treating the chronic diseases of old age. This is because the damage that the aging processes cause still continues to take its toll; therefore, treating the symptoms will ultimately achieve very little and certainly not cure the disease.

So, given that the aging processes lead to the diseases of aging, it is understandable that scientists are starting to consider aging itself to be a disease. While we do not yet fully understand all the intricacies of aging, we already know a great deal about the individual processes.[5] Certainly, we now know enough about aging to begin developing and testing interventions that directly target the underlying processes in order to prevent or treat pathology.

Treating the underlying processes and repairing their damage, which leads to the familiar diseases of old age, is the basis for the medical approach known as rejuvenation biotechnology, a multidisciplinary field that aims to prevent and treat age-related diseases by targeting the aging processes directly.

Aging is the foundation of age-related diseases

Even if aging is not a disease itself, the individual processes do lead to pathology and age-related diseases, such as cancer, heart disease, Parkinson’s, and Alzheimer’s. So, knowing that these processes create the conditions for diseases to develop, it makes sense to target the processes themselves in order to potentially prevent or treat a slew of age-related diseases at once.

The changes that aging brings vary from one person to another, but the common processes of aging are at work in all of us, albeit with some small variances between individuals. For example, we all suffer wear and tear in our joints due to the loss of cartilage, and we all experience the loss of skin elasticity due to the degradation of elastin and the failure of connective tissues. We all encounter other age-related changes, such as the accumulation of non-dividing senescent cells that cause chronic inflammation and disrupt tissue repair, and we also suffer from the accumulation of metabolic waste products that collect in our bodies over time.

As these changes progress, they eventually lead to the familiar diseases of aging. For example, lipids are critical for the function of our metabolism and are essential as part of our diet; however, over time, these processed lipids begin to accumulate in the blood vessel walls. Macrophages arrive to clear the toxic fatty waste away, but they become immobilized and die. This causes inflammation, attracting more macrophages and continuing the cycle. Ultimately, this debris forms plaques that harden the blood vessels and cause them to narrow; this causes blood pressure to rise and can eventually result in a heart attack or stroke.

This demonstrates that the normal metabolic processes that keep us alive ultimately lead to disease. Importantly, in this case, the early age-related changes that set the scene for disease progression, such as high cholesterol, have no symptoms. Nevertheless, such changes are the precursors of deadly diseases and are considered suitable targets for treatment. The same can be said for the other, more subtle, changes and damages that the aging processes cause.

Age-related conditions, such as arthritis, diabetes, osteoporosis, Alzheimer’s, Parkinson’s and many cancers, all follow this dynamic. Simply put, given the sufficient passage of time, the aging processes will cause us to suffer from multiple diseases. Therefore, we should consider these diseases to be the clinical manifestation of these age-related changes. In fact, medicine has been fighting against age-related changes for a long time, even if it was not obvious. For example, a doctor recommending that his patient should reduce his fat and carbohydrate intake to delay heart disease is already fighting those age-related changes. The diabetic who modifies her diet to better manage blood sugar levels is also doing the same thing.

Some people might contest this point of view, stating that the aging process is “natural” and therefore cannot be a disease. The argument that natural things are always good, the appeal to nature, is a logical fallacy. Such people may see natural and pathological as being mutually exclusive. Thus, what is natural must always be good, and what is pathological is bad, and so it cannot also be natural. This is, of course, false when you consider the meaning of each word. Natural simply means something that follows the normal, established course of events, and pathological means something that is harmful.

Conclusion

So, is aging natural or pathological? Well, by the dictionary definitions, aging can be described as both natural and pathological without contradiction.

Additionally, as it is currently classified, aging could be considered a syndrome, specifically a co-morbid syndrome. This really does describe aging perfectly; it is a group of symptoms that consistently occur together and a condition characterized by a set of associated symptoms. Ultimately, aging is an umbrella term describing a range of pathological changes; it may struggle to be accepted as a disease, but it already qualifies as a syndrome.

However, the question of aging being a disease or not is essentially semantic in nature. What rejuvenation biotechnology seeks to achieve is nothing more than preventing age-related diseases by treating the early stages of pathology, which are considered a natural process. While these early age-related changes have not been given a disease name, they are instrumental in the development of diseases, and surely, when it comes to medical treatment, that is all that matters.

References

[1] Bulterijs, S., Hull, R. S., Björk, V. C., & Roy, A. G. (2015). It is time to classify biological aging as a disease. Frontiers in genetics, 6.

[2] Crimmins, E. M. (2015). Lifespan and healthspan: Past, present, and promise. The Gerontologist, 55(6), 901-911.

[3] Olshansky, S. J., Passaro, D. J., Hershow, R. C., Layden, J., Carnes, B. A., Brody, J., … & Ludwig, D. S. (2005). A potential decline in life expectancy in the United States in the 21st century. New England Journal of Medicine, 352(11), 1138-1145.

[4] Reither, E. N., Olshansky, S. J., & Yang, Y. (2011). New forecasting methodology indicates more disease and earlier mortality ahead for today’s younger Americans. Health Affairs, 10-1377.

[5] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.

About  Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Could Filtering Our Aged Blood Keep us Young? – Article by Steve Hill and Nicola Bagalà

Could Filtering Our Aged Blood Keep us Young? – Article by Steve Hill and Nicola Bagalà

Steve Hill

Nicola Bagalà


Editor’s Note: In this article, Mr. Nicola Bagalà and Steve Hill present the interview they conducted with Dr. Irina Conboy of Berkeley University and Dr. Michael Conboy of Havard University on the topic of youthful blood.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, February 17, 2018

Due to a recently published study on the effects of young plasma on aged mice, we got in touch with Dr. Irina Conboy of Berkeley University. Dr. Conboy is an Associate Professor at the Department of Bioengineering and an expert in stem cell niche engineering, tissue repair, stem cell aging and rejuvenation. Before we dive into the main topic, let’s familiarize ourselves a little with Dr. Conboy and her work.

Dr. Conboy got her Ph.D. at Stanford University, focusing on autoimmunity. She met her partner in science—and in life—Dr. Michael Conboy at Harvard and they got married before embarking on graduate studies; they celebrated their Silver Anniversary a few years ago. During her postdoctoral studies, she began focusing on muscle stem cells, trying to figure out what directs them to make new healthy tissue and what causes them to lose their ability to regenerate the tissues they reside in as we age [1].

Together with her husband Michael, she eventually discovered that old stem cells could be reactivated and made to behave like young ones if appropriately stimulated. The Conboys’ parabiosis experiments—which consisted in hooking up the circulatory systems of aged and young mice—showed that old age is not set in stone and can be reversed in a matter of weeks [2].

The follow-up work by the Conboys uncovered that age-accumulated proteins, such as TGF-β1, inhibited stem cells’ ability to repair tissues even in young mice, and when TGF-β1 signaling is normalized to its young levels, old mice (equivalent to 80-year old people) have youthful muscle regeneration and better neurogenesis in the hippocampus (the area of the brain that is responsible for memory and learning) [3].

While young blood did appear to be beneficial to old stem cells, their evidence suggested that the real culprit of the broad loss of tissue repair with age was the negative influence of age-accumulated inhibitory proteins in aged tissues and circulation, also called the stem cell niche [4].

This conclusion is certainly compatible with the view of aging as a damage accumulation process [5]. As Irina herself pointed out in this interview, in the parabiosis experiments, the old mice had access to the more efficient young organs: lungs, liver, kidneys and immune system of the younger mice, which likely accounted for many of the benefits observed in the elderly parabiosed mice. With respect to the rejuvenation of the brain, the old mice experienced environmental enrichment by being sutured to young, more active parabionts, and this is known to improve the formation of new brain cells, learning, and memory.

An aged niche blocks the action of old and young stem cells alike very quickly; therefore, as Dr. Conboy observed in an article in the Journal of Cell Biology, we can’t treat the diseases of aging by simply transplanting more stem cells, because they will just stop working. Their niche needs to be appropriately engineered as well. Fortunately, there are potential solutions to this problem; such as the use of artificial gel niches and defined pharmacology that are designed to protect transplanted or endogenous stem cells from the deleterious environment of the old body.

This research holds the potential to significantly postpone the onset of age-related diseases and possibly reverse them one day, including frailty, muscle wasting, cognitive decline, liver adiposity and metabolic failure, but Dr. Conboy remains cautious about the possibilities until more data is in. However, she does think that longer and healthier productive lives could improve people’s attitudes towards the environment and treating each other with compassion and respect—a view that we definitely share.

We managed to catch up with Irina and Michael Conboy and talk to them about their work.

For the sake of those new to the topic, what is it in young blood and aged blood that affects aging?

Irina: Numerous changes in the levels of proteins that together regulate cell and tissue metabolism throughout the body.

Mike: We wondered why almost every tissue and organ in the body age together and at a similar rate, and from the parabiosis and blood exchange work now think that young blood has several positive factors, and old blood accumulates several negative, “pro-aging” factors.

A lot of media attention and funding is currently being directed to youthful blood transfusions; how can we move beyond this to potentially more promising approaches, such as filtering and calibration of aged blood?

Irina: People need to understand not just the titles, abstracts and popular highlights of research papers, but the results and whether they support (or not) the promise of rejuvenation by young blood. In contrast to vampire stories, we have no strong experimental evidence that this is true, and there is a lot of evidence that infusing your body with someone else’s blood has severe side effects (even if it is cell-free).

Mike: Translational research!

Some evidence suggests dilution is the most likely reason that young blood has some beneficial effects; what are your thoughts on this recent study [6] in rats that shows improved hepatic function partially via the restoration of autophagy?

Irina: There are certainly “young” blood factors that are beneficial, not just a dilution of the old blood, and this benefit differs from organ to organ. We have published on improved liver regeneration, reduced fibrosis and adiposity by transfusion of old mice with young blood, but these are genetically matched animals, and in people, we do not have our own identical but much younger twins [7].

If dilution is also playing a role here, then can we expect similar or better results from calibrating aged blood?

Irina: Yes, and our work in progress supports the idea.

In your 2015 paper, you identified that TGF-β1 can be either pro-youthful or pro-aging in nature, depending on its level [8]. In the study, you periodically used an Alk-5 inhibitor to reduce TGF-β1 levels and promote regeneration in various tissues. In the study, you showed that TGF-β1 was important in myogenesis and neurogenesis; is there reason to believe that this mechanism might be ubiquitous in all tissues?

Irina: Yes, because TGF-β1 receptors are present in most cells and tissues.

Also, TGF-β1 is only one of a number of factors that need to be carefully balanced in order to create a pro-youthful signalling environment. How many factors do you believe we will need to calibrate?

Irina: There will be a certain benefit from calibrating just TGF-beta 1, but also additional benefits from more than one or just TGF-beta.

How do you propose to balance this cocktail of factors in aged blood to promote a youthful tissue environment?

Irina: We are working on the NextGen blood apheresis devices to accomplish this.

So, you are adapting the plasmapheresis process to effectively “scrub” aged blood clean and then return it to the patient. This would remove the need to transfuse blood from young people, as your own blood could be filtered and returned to you, and no immune reaction either, right?

Irina: Accurate.

This plasmapheresis technique is already approved by the FDA, we believe, so this should help you to develop your project faster, right?

Irina: Exactly.

Do you think a small molecule approach is a viable and, more importantly, a logistically practical approach to calibrate all these factors compared to filtering aged blood?

Irina: Yes, it is a very feasible alternative to the NextGen apheresis that we are working and publishing on.

It is thought that altered signaling is caused by other aging hallmarks higher up in the chain of events; even if we can “scrub” aged blood clean, is it likely to have a long-lasting effect, or would the factors reach pro-aging levels fairly quickly again if nothing is done about the other hallmarks antagonizing them?

Irina: That needs to be established experimentally, but due to the many feedback loops at the levels of proteins, genes and epigenetics, the acquired youthful state might persist.

Ultimately, could a wearable or an implanted device that constantly filters the blood be the solution to these quickly accumulating factors?

Irina: Maybe, but the first step of a day at a NextGen apheresis clinic once every few months might be more realistic.

Filtering seems to be a far more practical solution, so how are you progressing on the road to clinical trials?

Irina: We are collaborating with Dr. Dobri Kiprov, who is a practicing blood apheresis physician with 35 years of experience, and he is interested in repositioning this treatment for alleviating age-related illnesses.

Senolytics and removing senescent cells and the resulting inflammation they cause during the aging process has become a hot topic in the last year or so. What are your thoughts on senolytics as a potential co-therapy with a blood filtering approach?

Irina: Might be good, but we should be careful, as p16 is a normal, good gene that is needed for many productive activities by many cells.

What do you think it will take for the government to fully support the push to develop rejuvenation biotechnology?

Irina: Clear understanding of the current progress and separating the real science from snake oil is very important for guiding funding toward realistic clinical translation and away from the myth and hype.

The field is making amazing progress, but, sadly, it is plagued by snake oil. As much as an “anti-aging free market” encourages innovation, it also encourages hucksters. How can a member of the public tell the difference between credible science and snake oil?

Irina: I was thinking for some time about starting a popularized journal club webpage where ordinary people can see what we typically critically point out in the lab setting about published papers and clinical trials.

How can our readers learn more about your work and support your research?

Irina: The new Conboy lab website is coming up; meanwhile, contact me and Dr. Mike at iconboy@berkeley.edu and conboymj@berkeley.edu

Conclusion

We would like to thank Irina and Michael for taking the time to answer our questions and for providing the readers with a fascinating insight into their work.

Literature

[1] Conboy, I. M., Conboy, M. J., Smythe, G. M., & Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302(5650), 1575-1577.

[2] Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760-764.

[3] Yousef, H., Conboy, M. J., Morgenthaler, A., Schlesinger, C., Bugaj, L., Paliwal, P., … & Schaffer, D. (2015). Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget, 6(14), 11959.

[4] Rebo, J., Mehdipour, M., Gathwala, R., Causey, K., Liu, Y., Conboy, M. J., & Conboy, I. M. (2016). A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nature communications, 7.

[5] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.

[6] Liu, A., Guo, E., Yang, J., Yang, Y., Liu, S., Jiang, X., … & Gewirtz, D. A. (2017). Young plasma reverses age‐dependent alterations in hepatic function through the restoration of autophagy. Aging cell.

[7] Rebo, J., Mehdipour, M., Gathwala, R., Causey, K., Liu, Y., Conboy, M. J., & Conboy, I. M. (2016). A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nature communications, 7.

[8] Yousef, H., Conboy, M. J., Morgenthaler, A., Schlesinger, C., Bugaj, L., Paliwal, P., … & Schaffer, D. (2015). Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget, 6(14), 11959.

 

About Steve Hill

As a scientific writer and a devoted advocate of healthy longevity technologies Steve has provided the community with multiple educational articles, interviews and podcasts, helping the general public to better understand aging and the means to modify its dynamics. His materials can be found at H+ Magazine, Longevity reporter, Psychology Today and Singularity Weblog. He is a co-author of the book “Aging Prevention for All” – a guide for the general public exploring evidence-based means to extend healthy life (in press).

About Nicola Bagalà

Nicola Bagalà has been an enthusiastic supporter and advocate of rejuvenation science since 2011. Although his preferred approach to treating age related diseases is Aubrey de Grey’s suggested SENS platform, he is very interested in any other potential approach as well. In 2015, he launched the blog Rejuvenaction to advocate for rejuvenation and to answer common concerns that generally come with the prospect of vastly extended healthy lifespans. Originally a mathematician graduated from Helsinki University, his scientific interests range from cosmology to AI, from drawing and writing to music, and he always complains he doesn’t have enough time to dedicate to all of them which is one of the reasons he’s into life extension. He’s also a computer programmer and web developer. All the years spent learning about the science of rejuvenation have sparked his interest in biology, in which he’s planning to get a university degree.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

The Abolition of Aging – A Book Review – Article by Nicola Bagalà

The Abolition of Aging – A Book Review – Article by Nicola Bagalà

Nicola Bagalà


Editor’s Note: In this article, Mr. Nicola Bagalà provides a book review of the book The Abolition of Aging by David Wood, a book which explains in great detail the benefits that would derive from a successful implementation of the “rejuveneering project”.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, February 13, 2018

As you might recall, in my review of Ending Aging, I said that the book could have benefited from a more in-depth discussion of the benefits of rejuvenation as well as the concerns and objections often raised against it. Anyone else sharing the same feeling will find what they’re looking for in The Abolition of Aging, by Chair of London Futurists David Wood.

Written in an elegant, clear style, The Abolition of Aging brilliantly accomplishes the difficult task of guiding the reader through all the turns and twists of the topic, explaining in great detail the benefits that would derive from a successful implementation of the “rejuveneering project”—as Wood calls it—presenting all the typical objections and related counterarguments, and—in the words of 3G Doctor Director David Doherty—providing innumerable “stunning references and observations”.

Just like there’s no time to waste if we want to defeat aging in time for currently living people to benefit, Wood wastes no time with lengthy preambles; the very first line of the foreword comes directly to the point, bluntly stating what readers unfamiliar with the topic may find shocking: the possibility of eliminating biological aging is now within striking distance.

Possibly preventing the reader’s reaction, the author immediately gives a preliminary discussion of the traditional responses to his claim: “it’s not possible” and “it’s not desirable”, which Wood ascribes—correctly, in my opinion—in no small part to a great desire to avoid an unpleasant discussion that would force us to reconsider many assumptions on the inevitable finitude of human existence, with which most of us have already made our peace.

To succeed in his task of getting us to snap out of a multi-millenary Stockholm syndrome that pushes humanity to praise the tyranny of old age, Wood resorts to every weapon in his arsenal, making a very convincing case that rejuvenation is very much desirable as well as possible.

Skeptics who assume that the technology necessary to rejuvenate people is centuries away will be surprised to learn about how advanced the field actually is and how much faster it is likely to grow than conventional wisdom would have it. The word of senior scientists who claim that the reversal of aging is nothing but a pipe dream, as Wood warns us, should be taken with a grain of salt: The Abolition of Aging provides plenty of examples of luminaries and eminent experts of the past summarily dismissing scientific theories and technologies that today are well-established and taken for granted by everyone. (Among many such examples, one I really cannot abstain from mentioning is the hilariously wrong 1903 prediction by the New York Times that human flight, if at all possible, would take one to ten million years to come true. Less than 70 years later, not only was human flight commonplace, but human beings had landed on the Moon.)

Nonetheless, Wood’s optimism should not be mistaken for complacency. He makes no mystery that the success of the rejuveneering project is a mere possibility, however likely, and not at all a certainty. Many are the unknowns—scientific, political, societal, financial, and more—that could well thwart our efforts in this direction if we’re not careful. Wood offers advice on how to deal with these issues standing in the way of an aging-free world as well as those that might lurk beyond. After all, the functioning of society as we know it hinges on the existence of aging; our lives, our policies, and our customs are built around it. Eliminating aging would require a serious rethinking of much of society’s inner workings, and this operation is not free of risks, as Wood rightfully concedes. Great changes for the better often come with potential downsides, but we should not let this deter us; rather, we should appreciate how the fruits to be reaped are well worth the potential risks involved and act now to prevent or mitigate any unwanted consequences. A world without aging would need to be managed in a different way, but that is not a problem.

A particular obstacle on the way to a world without aging is represented by adverse psychology, to which Wood dedicates an entire chapter. Ever since we had the ability to reflect upon ourselves and the human condition, as the author explains, we’ve had to face our own mortality and fear of death. Fear of death is a very useful adaptation to increase the chance that an individual will live long enough to reproduce, but in the case of a highly self-aware species like us, it’s a double-edged sword. Our deep desire to express ourselves, to learn, create, grow, to live, inevitably clashes against the knowledge of our apparently inescapable demise.

If left unresolved, this inner conflict could strike terror so paralyzing that living our lives would be impossible. With no hope of defeating an apparently all-powerful enemy such as death, the young human race had to devise other ways out of this conundrum—psychological expedients to sugar the pill or even make it appear better than the alternative; for some, having children, creating art, changing the world through their work and so on may all offer the comforting thought of their legacy, and thus part of themselves, carrying on at least to some extent; believers have faith that their immortal souls will continue existing even after their bodies will have perished; others assume a world without death would, for one reason or another, be so unbearable that oblivion would be preferable.

These mental devices have existed for so long that they’ve shaped our society and our morals; accepting death has become a sign of wisdom while trying to avoid or delay it when “the right time” has come is seen as a sign of immaturity and selfishness. These views are so entrenched in most people that any attempt to question their validity is likely to trigger aggressive defensive reactions or, sometimes, contempt and ridicule. For these reasons, life extension is not an easy idea to sell. In his detailed discussion, though, Wood provides valuable advice to ease the advocates’ task, listing the dos and don’ts of how to present the subject.

Rejuvenation is not all the book deals with. Wood’s futurist soul fully reveals itself in his vision of the futures of humanity, faith, and death, which are discussed in the chapter “Towards Humanity+” as well as in the possibilities outlined in chapter 12, “Radical alternatives”, such as cryonics, head transplants, and mind uploading. While these ideas are often plagued by abundant hype and unjustified premature enthusiasm, I find that Wood simply presented relevant facts as they are, with an appropriate dose of healthy skepticism where needed but without any undue disbelief. Cryonics in particular, which is usually unjustly regarded as a scam to part rich fools from their money, is presented as a valid backup plan for those who don’t expect to live long enough to see the dawn of rejuvenation; just like cryonics companies themselves, Wood makes no mystery that it is uncertain if bringing back to life cryopreserved patients will ever be possible, despite encouraging successes with transplantation of cryopreserved animal organs. Then again, I would add that if the chances of coming back to life from cryopreservation are uncertain, there’s no chance whatsoever of coming back after being buried or cremated.

Summing up, I believe that The Abolition of Aging is a must-read for experienced advocates and newcomers alike. People who haven’t made up their minds about supporting rejuvenation will be fully equipped to make an informed decision after reading this book, or, at the very least, will be able to research the topic further; advocates will have plenty of references and useful information for their advocacy efforts. Together with Ending Aging, this book answers pretty much all the whats, whens, hows, and whys to the best of our current understanding.

About Nicola Bagalà

Nicola Bagalà has been an enthusiastic supporter and advocate of rejuvenation science since 2011. Although his preferred approach to treating age related diseases is Aubrey de Grey’s suggested SENS platform, he is very interested in any other potential approach as well. In 2015, he launched the blog Rejuvenaction to advocate for rejuvenation and to answer common concerns that generally come with the prospect of vastly extended healthy lifespans. Originally a mathematician graduated from Helsinki University, his scientific interests range from cosmology to AI, from drawing and writing to music, and he always complains he doesn’t have enough time to dedicate to all of them which is one of the reasons he’s into life extension. He’s also a computer programmer and web developer. All the years spent learning about the science of rejuvenation have sparked his interest in biology, in which he’s planning to get a university degree.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.

Zeb2-NAT Molecule May Reverse Cellular Aging – Article by Nicola Bagalà

Zeb2-NAT Molecule May Reverse Cellular Aging – Article by Nicola Bagalà

Nicola Bagalà


Editor’s Note: In this article, Mr. Nicola Bagalà explains a study that shows aged cells that usually resist reprogramming can be regenerated by reducing the level of Zeb2-NAT without harming the cells’ developmental potency.  This article was originally published by the Life Extension Advocacy Foundation (LEAF).

                   ~ Kenneth Alum, Director of  Publication, U.S. Transhumanist Party, January 28, 2018

Researchers have found that by manipulating a single RNA molecule, they can reverse some aspects of cellular aging and regenerate aged cells.

Old cells resist regeneration

As we grow older, our cells gradually age, leading to the development of various diseases. Therefore, inducing cellular regeneration is one of the approaches that researchers are using to combat the age-related diseases associated with cellular aging. Unfortunately, aged cells are often highly resistant to therapies aimed at inducing regeneration.

Ribonucleic acid (RNA) is responsible for the creation of cellular proteins. However, a special type of molecule called non-coding RNA is never made into protein. In fact, when they mapped the human genome in 2001, they discovered that only around 2% of RNA is actually made into proteins.

Now, researchers have found a way to bypass the resistance of aged cells to being regenerated and becoming functionally more youthful.

What the study found out

In a recent Nature Communications paper, a team led by Dr. Bruno Bernardes de Jesus of the Instituto de Medicina Molecular (iMM) João Lobo Antunes in Lisboa discusses a technique that allowed the team to achieve easier cellular reprogramming of old fibroblasts into pluripotent cells [1].

Fibroblasts are connective tissue cells in animals that synthesize both the extracellular matrix, which is a “scaffolding” made up of extracellular molecules that provides structural and biochemical support to cells, and collagen, which is the main structural protein of connective tissues in animal bodies.

The study showed that the fibroblasts of old mice express higher levels of the transcription factor Zeb2. A transcription factor is a protein that regulates the DNA-to-messenger-RNA transcription rate, and Zeb2, in particular, induces epithelial cells to transition to mesenchymal cells. Epithelial cells are one of the four basic tissue types of animal cells, whereas mesenchymal cells are multipotent stem cells that give rise to fibroblasts, among others.

The synthesis of Zeb2 is controlled by the ribonucleic acid Zeb2-NAT (NAT stands for “natural antisense transcript”). What the scientists demonstrated in this paper is that by knocking down Zeb2-NAT in old mouse fibroblasts, Zeb2 can be downregulated significantly, which, in turn, leads to an enhanced fibroblast ability to turn into pluripotent cells rather than mesenchymal cells. The difference is that while mesenchymal cells can turn into only a certain range of related cells, pluripotent stem cells can turn into nearly all types of cells.

The way the researchers silenced Zeb2-NAT was by transfecting the fibroblasts with certain ribonucleic acid sequences—in other words, they introduced these sequences into the fibroblasts’ nuclei to modify their behavior.

Essentially, what they demonstrated is that aged cells that usually resist reprogramming can be regenerated by reducing the level of Zeb2-NAT without harming the cells’ developmental potency.

Conclusion

This study results spotlight the role of non-coding RNA in the fine-tuning and expression of protein-coding genes involved in pluripotency, differentiation, and reprogramming.

This opens the door for the regeneration of aged cells and tissues in an effort to prevent or reverse age-related diseases caused by cellular aging.

Literature

[1] Bernardes de Jesus, B., Pires Marinho, S., Barros, S., Sousa-Franco A., Alves-Vale, C., Carvalho, T., Carmo-Fonseca, M. (2018). Silencing of the lncRNA Zeb2-NAT facilitates reprogramming of aged fibroblasts and safeguards stem cell pluripotency. Nature Communications.

About Nicola Bagalà

Nicola Bagalà has been an enthusiastic supporter and advocate of rejuvenation science since 2011. Although his preferred approach to treating age related diseases is Aubrey de Grey’s suggested SENS platform, he is very interested in any other potential approach as well. In 2015, he launched the blog Rejuvenaction to advocate for rejuvenation and to answer common concerns that generally come with the prospect of vastly extended healthy lifespans. Originally a mathematician graduated from Helsinki University, his scientific interests range from cosmology to AI, from drawing and writing to music, and he always complains he doesn’t have enough time to dedicate to all of them which is one of the reasons he’s into life extension. He’s also a computer programmer and web developer. All the years spent learning about the science of rejuvenation have sparked his interest in biology, in which he’s planning to get a university degree.

About LIFE EXTENSION ADVOCACY FOUNDATION (LEAF)

In 2014, the Life Extension Advocacy Foundation was established as a 501(c)(3) non-profit organization dedicated to promoting increased healthy human lifespan through fiscally sponsoring longevity research projects and raising awareness regarding the societal benefits of life extension. In 2015 they launched Lifespan.io, the first nonprofit crowdfunding platform focused on the biomedical research of aging.

They believe that this will enable the general public to influence the pace of research directly. To date they have successfully supported four research projects aimed at investigating different processes of aging and developing therapies to treat age-related diseases.

The LEAF team organizes educational events, takes part in different public and scientific conferences, and actively engages with the public on social media in order to help disseminate this crucial information. They initiate public dialogue aimed at regulatory improvement in the fields related to rejuvenation biotechnology.